Question A.6: Find the product of two matrices A and B by partitioning A =......

Find the product of two matrices \overline{A} and \overline{B} by partitioning
\overline{A} = \left|\begin{matrix} 1 &2& 3 \\ 2& 0& 1  \\ 1& 3& 6 \end{matrix} \right| \ \ \ \overline{B} = \left|\begin{matrix} 1& 2& 1& 0 \\ 2& 3& 5& 1 \\  4& 6& 1& 2 \end{matrix} \right|
is given by

\overline{A} \ \overline{B} = \left|\begin{matrix}\left|\begin{matrix}1& 2 \\ 2& 0\end{matrix} \right| \left|\begin{matrix}1& 2& 1 \\ 2 &3 &5\end{matrix} \right| + \left|\begin{matrix}3 \\ 1\end{matrix} \right| \left|\begin{matrix}4 &6 &1\end{matrix} \right| & \left|\begin{matrix} 1 &2 \\ 2& 0\end{matrix} \right| \left|\begin{matrix}0 \\ 1\end{matrix} \right| + \left|\begin{matrix}3 \\ 1\end{matrix} \right| \left|\begin{matrix}2\end{matrix} \right| \\\\ \left|\begin{matrix}1 &3\end{matrix} \right| \left|\begin{matrix}1 &2& 1 \\ 2& 3& 5\end{matrix} \right| + \left|\begin{matrix}6\end{matrix} \right| \left|\begin{matrix}4& 6& 1\end{matrix} \right| & \left|\begin{matrix}1 &3\end{matrix} \right| \left|\begin{matrix}0 \\ 1\end{matrix} \right| + \left|\begin{matrix}6\end{matrix} \right| \left|\begin{matrix}2\end{matrix} \right| \end{matrix} \right|
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

A matrix can be inverted by partition. In this case, each of the diagonal submatrices must be square. Consider a square matrix partitioned into four submatrices:
\overline{A} = \left|\begin{matrix} \overline{A}_{1}&\overline{A}_{2} \\  \overline{A}_{3}&\overline{A}_{4}  \end{matrix} \right|    (A.60)
The diagonal submatrices \overline{A}_{1} and \overline{A}_{4} are square, though these can be of different dimensions. Let the inverse of \overline{A} be
\overline{A}^{-1} = \left|\begin{matrix} \overline{A}^{\prime \prime}_{1}&\overline{A}^{\prime \prime}_{2} \\  \overline{A}^{\prime \prime}_{3}&\overline{A}^{\prime \prime}_{4}  \end{matrix} \right|    (A.61)
then
\overline{A}^{-1}  \overline{A}= \left|\begin{matrix} \overline{A}^{\prime \prime}_{1}&\overline{A}^{\prime \prime}_{2} \\  \overline{A}^{\prime \prime}_{3}&\overline{A}^{\prime \prime}_{4}  \end{matrix} \right| \left|\begin{matrix} \overline{A}_{1}&\overline{A}_{2} \\  \overline{A}_{3}&\overline{A}_{4}  \end{matrix} \right| = \left|\begin{matrix} 1&0 \\  0&1  \end{matrix} \right|    (A.62)
The following relations can be derived from this identity:
\overline{A}^{\prime \prime}_{1}=[ \overline{A}_{1}- \overline{A}_{2} \overline{A}^{-1}_{4} \overline{A}_{3}]^{-1}
\overline{A}^{\prime \prime}_{2}=- \overline{A}^{\prime \prime}_{1} \overline{A}_{2}\overline{A}^{-1}_{4}                                  (A.63)
\overline{A}^{\prime \prime}_{4}=[-\overline{A}_{3}\overline{A}^{-1}_{1}\overline{A}_{2}+\overline{A}_{4}]^{-1}
\overline{A}^{\prime \prime}_{3}=- \overline{A}^{\prime \prime}_{4} \overline{A}_{3}\overline{A}^{-1}_{1}

Related Answered Questions

Question: A.2

Verified Answer:

The characteristic equation is given by \le...
Question: A.3

Verified Answer:

Its characteristics equation is \left|\beg...
Question: A.10

Verified Answer:

From Equations A.75 and A.76, l_{ij}=a_{ij...
Question: A.7

Verified Answer:

\overline{A}_{1} = \left|\begin{matrix}2 &a...
Question: A.5

Verified Answer:

Attach a unit matrix of 2 × 2 and perform the oper...
Question: A.1

Verified Answer:

This matrix can be reduced to an upper triangular ...