Question 3.5.13: Find the quotient of the identity function by the reciprocal......

Find the quotient of the identity function by the reciprocal function.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Let f:RR:f(x) f: R \rightarrow R: f(x) and g:R{0}R:g(x)=1x g: R-\{0\} \rightarrow R: g(x)=\frac{1}{x} be the identity function and the reciprocal function respectively.

Now, dom(fg)=dom(f)dom(g){x:g(x)=0} \operatorname{dom}\left(\frac{f}{g}\right)=\operatorname{dom}(f) \cap \operatorname{dom}(g)-\{x: g(x)=0\}

and {x:g(x)=0}={x:1x=0}=ϕ \{x: g(x)=0\}=\left\{x: \frac{1}{x}=0\right\}=\phi .

dom(fg)=[RR{0}]ϕ=R{0} \therefore \quad \operatorname{dom}\left(\frac{f}{g}\right)=[R \cap R-\{0\}]-\phi=R-\{0\} .

So, fg:R{0}R:(fg)(x)=f(x)g(x)=x1x=x2 \frac{f}{g}: R-\{0\} \rightarrow R:\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{x}{\frac{1}{x}}=x^{2} .

Hence, (fg)(x)=x2 \left(\frac{f}{g}\right)(x)=x^{2} for all xR{0} x \in R-\{0\} .

Related Answered Questions

Question: 3.5.12

Verified Answer:

Let f:RR:f(x)=x f: R \rightarrow R: f(x)=x an...
Question: 3.5.11

Verified Answer:

Let f:RR:f(x)=x f: R \rightarrow R: f(x)=x an...
Question: 3.5.10

Verified Answer:

Let f:RR:f(x)=x f: R \rightarrow R: f(x)=x an...
Question: 3.5.9

Verified Answer:

Let f:RR:f(x)=x f: R \rightarrow R: f(x)=x an...
Question: 3.5.8

Verified Answer:

Let f:RR:f(x)=x f: R \rightarrow R: f(x)=x be...
Question: 3.5.3

Verified Answer:

Clearly, f(x)=1(x + 4) f(x)=\frac{1}{(x  +  4)} ...