Find the sum and the difference of the identity function and the modulus function.
Let f: R \rightarrow R: f(x)=x be the identity function.
And, let g: R \rightarrow R: g(x)=|x| be the modulus function.
Then, \operatorname{dom}(f)=R and \operatorname{dom}(g)=R .
\therefore \quad \operatorname{dom}(f) \cap \operatorname{dom}(g)=R \cap R=R .
(i) \operatorname{dom}(f+g)=\operatorname{dom}(f) \cap \operatorname{dom}(g)=R .
Now, (f+g): R \rightarrow R is given by
Hence, (f+g)(x)=\left\{\begin{array}{l}2 x, \text { when } x \geq 0 \\ 0, \text { when } x<0 .\end{array}\right.
(ii) \operatorname{dom}(f-g)=\operatorname{dom}(f) \cap \operatorname{dom}(g)=R .