Question 3.5.8: Find the sum and the difference of the identity function and......

Find the sum and the difference of the identity function and the modulus function.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Let f: R \rightarrow R: f(x)=x be the identity function.

And, let g: R \rightarrow R: g(x)=|x| be the modulus function.

Then, \operatorname{dom}(f)=R and \operatorname{dom}(g)=R .

\therefore \quad \operatorname{dom}(f) \cap \operatorname{dom}(g)=R \cap R=R .

(i) \operatorname{dom}(f+g)=\operatorname{dom}(f) \cap \operatorname{dom}(g)=R .

Now, (f+g): R \rightarrow R is given by

\begin{aligned}(f+g)(x) & =f(x)+g(x) \\& =x+|x|=x+\left\{\begin{array}{l}x, \text { when } x \geq 0 \\-x, \text { when } x<0\end{array}\right. \\& =\left\{\begin{array}{l}x+x, \text { when } x \geq 0 \\x-x, \text { when } x<0\end{array}=\left\{\begin{array}{l}2 x, \text { when } x \geq 0 \\0, \text { when } x<0 .\end{array}\right.\right.\end{aligned}

Hence, (f+g)(x)=\left\{\begin{array}{l}2 x, \text { when } x \geq 0 \\ 0, \text { when } x<0 .\end{array}\right.

(ii) \operatorname{dom}(f-g)=\operatorname{dom}(f) \cap \operatorname{dom}(g)=R .

\begin{aligned}\therefore \quad(f-g)(x) & =f(x)-g(x) \\& =x-|x|=x-\left\{\begin{array}{l}x, \text { when } x \geq 0 \\-x, \text { when } x<0\end{array}\right.\end{aligned}
\begin{array}{l}=\left\{\begin{array}{l}x-x, \text { when } x \geq 0 \\x+x, \text { when } x<0\end{array}=\left\{\begin{array}{l}0, \text { when } x \geq 0 \\2 x, \text { when } x<0\end{array}\right.\right. \\  \\\therefore \quad(f-g)(x)=\left\{\begin{array}{l}0, \text { when } x \geq 0 \\2 x, \text { when } x<0 .\end{array}\right. \\\end{array}

Related Answered Questions

Question: 3.5.13

Verified Answer:

Let f: R \rightarrow R: f(x) and ...
Question: 3.5.12

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.11

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.10

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.9

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...