Question 1.59: Find the voltages across various elements in the circuit sho......

Find the voltages across various elements in the circuit shown in Fig. 1, using node method.

1
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The graph of the given circuit is shown in Fig. 2. It has six branches and three nodes. Hence, the circuit will have six voltages corresponding to
six branches. The branch voltages depend on the node voltages. In node analysis, the voltage of one of the nodes is chosen as the reference and it is equal to zero volt. In the circuit of Fig. 3, the reference node is denoted as 0. The voltages of the other two nodes are denoted as \bar{V}_1 \text { and } \bar{V}_2 .

The node basis matrix equation of the circuit shown in Fig. 3 is obtained by inspection as shown below:

\left[\begin{array}{ll}\bar{Y}_{11} & \bar{Y}_{12} \\\bar{Y}_{21} & \bar{Y}_{22} \end{array}\right]\left[\begin{array}{l}\bar{V}_1 \\ \bar{V}_2 \end{array}\right]=\left[\begin{array}{l}\bar{I}_{11} \\ \bar{I}_{22} \end{array}\right]               …….(1)

\begin{array}{l|l}\bar{Y}_{11}=\frac{1}{3}+\frac{1}{j 3}+\frac{1}{-j 5}=0.333-j 0.133 &\overline{ I }_{11}=5 \angle 90^{\circ}=j 5 \\\bar{Y}_{22}=\frac{1}{j 3}+\frac{1}{-j 5}+\frac{1}{6}=0.167-j 0.133 & \overline{ I }_{22}=10\angle 0^{\circ}=10 \\\bar{Y}_{12}=\bar{Y}_{21}=-\left(\frac{1}{j 3}+\frac{1}{-j 5}\right)=j 0.133 &\end{array}

On substituting the above terms in equation (1), we get,

\left[\begin{array}{rr}0.333-j 0.133 & j 0.133 \\j 0.133 & 0.167-j 0.133\end{array}\right] \quad\left[\begin{array}{l}\bar{V}_1 \\ \bar{V}_2\end{array}\right]=\left[\begin{array}{c}j 5 \\10\end{array}\right]        …………(2)

To solve the node voltages by Cramer’s rule, let us define three determinants \Delta^{\prime}, \Delta_1^{\prime} \text { and } \Delta_2^{\prime} as shown below:

\Delta^{\prime}=\left|\begin{array}{rr}0.333- j 0.133 & j 0.133 \\j 0.133 & 0.167 j0.133\end{array}\right|;\Delta_1^{\prime}=\left|\begin{array}{rr}j 5 & j 0.133 \\10 & 0.167- j 0.133\end{array}\right| ; \Delta_2^{\prime}=\left|\begin{array}{rr}0.333- j 0.133 & j 5 \\j0.133 & 10\end{array}\right|

Now the node voltages are given by,\bar{V}_1=\frac{\Delta_1^{\prime}}{\Delta} \text { and}\bar{V}_2=\frac{\Delta_2^{\prime}}{\Delta}

\begin{aligned}& \Delta^{\prime}=\left|\begin{array}{rr}0.333-j 0.133 & j 0.133 \\j 0.133 & 0.167-j 0.133\end{array}\right|=[(0.333-j 0.133)\times(0.167-j 0.133)]-[j 0.133]^2 \\&=0.0556-j 0.0665 \\&\Delta_1^{\prime}=\left|\begin{array}{rr}j 5 & j 0.133 \\10 & 0.167-j 0.133\end{array}\right|=[j 5 \times(0.167-j 0.133)]-[10 \times j 0.133] \\&=0.665-j 0.495\end{aligned}

\Delta_2^{\prime}=\left|\begin{array}{rr}0.333-j 0.133 & j 5 \\j 0.133 & 10\end{array}\right|=[(0.333-j 0.133) \times 10]-[j 0.133\times j 5] = 3.995 − j1.33

\therefore \overline{ V }_1=\frac{\Delta_1^{\prime}}{\Delta^{\prime}}=\frac{0.665- j 0.495}{0.0556- j 0.0665}=9.302+ j2.2227=9.564 \angle 13.4^{\circ} V

\bar{V}_2=\frac{\Delta_2^{\prime}}{\Delta^{\prime}}=\frac{3.995- j 1.33}{0.0556- j 0.0665}=41.3339+ j25.5163=48.575 \angle 31.7^{\circ} V

To find branch voltages
The branch voltages are denoted by \overline{ V }_{ a }, \overline{ V }_{ b }, \overline{ V }_{ c }, \overline{ V }_{ d }, \overline{ V }_{ e } \text { and } \overline{ V }_{ f } \text {, }as shown in Fig. 4. The polarites of branch voltages are chosen arbitrarily.
The branch voltages depend on the node voltages. The relation between
branch and node voltages are obtained with reference to Fig. 4 as shown
below :

\begin{aligned}\bar{V}_a & =\bar{V}_b=\bar{V}_1=9.564 \angle 13.4^{\circ} V \\\bar{V}_c & =\bar{V}_d=\bar{V}_2=48.575 \angle 31.7^{\circ} V \\\bar{V}_e & =\bar{V}_f=\bar{V}_2-\bar{V}_1 \\& =(41.3339+ j 25.5163)-(9.302+ j 2.2227) \\& =32.0319+ j 23.2936=39.606 \angle 36^{\circ} V\end{aligned}
2.3
4

Related Answered Questions

Question: 1.43

Verified Answer:

The graph of the given circuit is shown in Fig. 2....
Question: 1.55

Verified Answer:

Solution of node voltages The given circuit has fo...
Question: 1.56

Verified Answer:

Let the node voltages be V_1 \ and \ V_2[/l...
Question: 1.58

Verified Answer:

Let us convert the 100∠0° V voltage source in seri...
Question: 1.60

Verified Answer:

The given circuit has three nodes excluding the re...
Question: 1.61

Verified Answer:

The given circuit has four nodes. Let us choose on...
Question: 1.62

Verified Answer:

The given circuit has four nodes. Let us choose on...
Question: 1.13

Verified Answer:

The graph of the given circuit is shown in Fig. 2....