Question 4.7: For a given earth orbit, the elements are h = 80,000 km²/s, ......

For a given earth orbit, the elements are h = 80,000 km²/s, e = 1.4, i = 30°, Ω = 40°, ω = 60°, and θ = 30°. Using Algorithm 4.5, find the state vectors r and v in the geocentric equatorial frame.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Step 1:

\{{\bf r}\}_{\bar{x}}=\frac{h^{2}}{\mu}\frac{1}{1+e\cos\theta}\left\{\begin{array}{c}{{\cos\theta}}\\ {{\sin\theta}}\\ {{0}}\end{array}\right\} = \frac{80,000^{2}}{398,600} \frac{1}{1 + 1.4 \cos 30°} \left\{\begin{array}{c}{{\cos30°}}\\ {{\sin30°}}\\ {{0}}\end{array}\right\} =\left\{\begin{array}{c}{{6285.0}}\\ {{3628.6}}\\ {{0}}\end{array}\right\} km

Step 2:

\{{\bf v}\}_{\bar{x}}=\frac{\mu}{h} \left\{\begin{array}{c}{{ – \sin\theta}}\\ {{ e + \cos\theta}}\\ {{0}}\end{array}\right\} = \frac{398,600}{80,000}  \left\{\begin{array}{c}{{ – \sin 30°}}\\ {{ 1.4 + \cos 30°}}\\ {{0}}\end{array}\right\} =\left\{\begin{array}{c}{{- 2.4913 }}\\ {{11.290}}\\ {{0}}\end{array}\right\} km / s

Step 3:

[ Q] _{X \bar{x}}= \begin{bmatrix} cos ω & sin ω &  0 \\ -sin ω &  cos ω &  0 \\  0 &  0& 1 \end{bmatrix} \begin{bmatrix} 1 & 0 &  0 \\ 0 &  cos i &  sin i  \\  0 &   -sin i & cos i  \end{bmatrix} \begin{bmatrix} cos Ω & sin Ω &  0 \\ -sin Ω &  cos Ω &  0 \\  0 &  0& 1 \end{bmatrix}

= \begin{bmatrix} cos 60° & sin 60° &  0 \\ -sin 60° &  cos 60° &  0 \\  0 &  0& 1 \end{bmatrix} \begin{bmatrix} 1 & 0 &  0 \\ 0 &  cos 30° &  sin 30°  \\  0 &   -sin 30° & cos 30°  \end{bmatrix} \begin{bmatrix} cos 40° & sin 40° &  0 \\ -sin 40° &  cos 40° &  0 \\  0 &  0& 1 \end{bmatrix}

= \begin{bmatrix} -0.099068 &  0.89593 &  0.43301 \\ – 0.94175 &  – 0.22496 &  0.25 \\  0.32139 & – 0.38302 &  0.86603 \end{bmatrix}

This is the direct cosine matrix for XYZ →  \bar{x}  \bar{y}  \bar{z} . The transformation matrix for \bar{x}  \bar{y}  \bar{z} →   XYZ  is the transpose ,

[ Q]_{\bar{x} X} = \begin{bmatrix} – 0.099068 &  -0.94175 &  0.32139 \\  0.89593 & – 0.22496 &  -0.38302 \\ 0.43301 &  0.25 &  0.86603 \end{bmatrix}

Step 4:

The geocentric equatorial position vector is

\{{\bf{r}}\}_{X}=[Q]_{\bar{x} X} \{{\bf{r}}\}_{\overline{{{x}}}}= \begin{bmatrix}- 0.099068 &  -0.94175 &  0.32139 \\  0.89593 & – 0.22496 &  -0.38302 \\ 0.43301 &  0.25 &  0.86603 \end{bmatrix} \left\{{\begin{array}{c}{6285.0}\\ {3628.6}\\ {0}\end{array}}\right\} = \left\{{\begin{array}{c}{- 4040}\\ {4815}\\ {3629}\end{array}}\right\} (km)   (a)

whereas the geocentric equatorial velocity vector is

\{{\bf{v}}\}_{X}=[Q]_{\bar{x} X} \{{\bf{v}}\}_{\overline{{{x}}}}= \begin{bmatrix}- 0.099068 &  -0.94175 &  0.32139 \\  0.89593 & – 0.22496 &  -0.38302 \\ 0.43301 &  0.25 &  0.86603 \end{bmatrix} \left\{{\begin{array}{c}{- 2.4913}\\ {11.290}\\ {0}\end{array}}\right\} = \left\{{\begin{array}{c}{- 10.39}\\ {-4.772}\\ {1.744}\end{array}}\right\} (km/s)   

The state vectors r and v are shown in Figure 4.17. By holding all the orbital parameters except the true anomaly fixed and allowing θ to take on a range of values, we generate a sequence of position vectors r_{\bar{x}}   from Eqn (4.37). Each of these is projected into the geocentric equatorial frame as in Eqn (a), using repeatedly the same transformation matrix [Q]_{ \bar{x} X}   . By connecting the end points of all the position vectors r_{X}   , we trace out the trajectory illustrated in Figure 4.17.

[\mathbf{Q}]=[\mathbf{R}_{3}(\gamma)][\mathbf{R}_{1}(\beta)][\mathbf{R}_{3}(\alpha)]\quad(0\leq\alpha\lt 360^{\circ}\quad0\leq\beta\leq180^{\circ}\quad0\leq\gamma\lt 360^{\circ})              (4.37)

تعليق توضيحي 2023-06-11 084941

Related Answered Questions