For the bar of Concept Application 4.10, determine the largest tensile and compressive stresses, knowing that the bending moment in the bar is M = 8 kip⋅in.
Use Eq. (4.71) with the given data
\sigma_x=\frac{M(r-R)}{A e r} (4.71)
M = 8 kip·in. A = bh = (2.5 in.)(1.5 in.) = 3.75 in²
and the values obtained in Concept Application 4.10 for R and e:
R = 5.969 e = 0.0314 in.
First using r=r_2=6.75 in. in Eq. (4.71), write
\begin{aligned} \sigma_{\max } & =\frac{M\left(r_2-R\right)}{A{e r_2}} \\ & =\frac{(8 kip \cdot in .)(6.75 in . -5.969 in.}{\left(3.75 in ^2\right)(0.0314 in .)(6.75 in .)} \\ & =7.86 ksi \end{aligned}
Now using r=r_1=5.25 in. in Eq. (4.71),
\begin{aligned} \sigma_{\min } & =\frac{M\left(r_1-R\right)}{\operatorname{Aer}_1} \\ & =\frac{(8 kip \cdot in .)(5.25 \text { in. }-5.969 \text { in. })}{\left(3.75 \text { in }^2\right)(0.0314 \text { in. })(5.25 \text { in. })} \\ & =-9.30 ksi \end{aligned}
Remark. Compare the values obtained for \sigma_{\max } \text { and } \sigma_{\min } with the result for a straight bar. Using Eq. (4.15) of Sec. 4.2,
\sigma_m=\frac{M c}{I} (4.15)
\begin{aligned} \sigma_{\max , \min } & =\pm \frac{M c}{I} \\ & =\pm \frac{(8 kip \cdot in .)(0.75 in .)}{\frac{1}{12}(2.5 in .)(1.5 in .)^3}=\pm 8.53 ksi \end{aligned}