Question 6.SP.1: For the CB amplifier of Fig. 3-23, find the voltage-gain rat......

For the CB amplifier of Fig. 3-23, find the voltage-gain ratio A_v = v_L/v_S using the tee-equivalent small-signal circuit of Fig. 6-3.

3.23
6.3
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The small-signal circuit for the amplifier is given by Fig. 6-9.    By Ohm’s law,
i_{c} = {\frac{v_{c b}}{R_{C}||R_{L}}} = {\frac{(R_{C}  +  R_{L})v_{L}}{R_{C}R_{L}}}                        (1)

Substituting (1) into (6.27) and (6.28) gives, respectively,
v_{e b} = (r_{e} + r_{b})i_{e}  –  r_{b}i_{c}                    (6.27)
v_{c b} = (\alpha^{′}r_{c} + r_{b})i_{e}  –  (r_{b} + r_{c})i_{c}                    (6.28)
v_{S} = v_{eb} = (r_{e} + r_{b})i_{e}  –  r_{b}{\frac{(R_{C}  +  R_{L})v_{L}}{R_{C}R_{L}}}                        (2)
v_{L} = v_{c b} = (\alpha r_{c} + r_{b})i_{e}  –  (r_{b} + r_{c}){\frac{(R_{C}  +  R_{L})v_{L}}{R_{C}R_{L}}}                        (3)

where we also made use of (6.29).    Solving (2) for i_e and substituting the result into (3) yield
\alpha^{\prime} \approx -h_{fb} = \alpha                  (6.29)
v_{L} = (\alpha r_{c} + r_{b}){\frac{v_{S}  +  {\frac{r_{b}(R_{C}  +  R_{L})}{R_{C}  +  R_{L}}}v_{L}}{r_{c}  +  r_{b}}}  –  (r_{b} + r_{c})\,{\frac{R_{C}  +  R_{L}}{R_{C}R_{L}}}\,v_{L}                        (4)

The voltage-gain ratio follows directly from (4) as
A_{v} = {\frac{v_{L}}{v_{S}}} = {\frac{(\alpha r_{c}  +  r_{b})R_{C}R_{L}}{R_{C}R_{L}(r_{e}  +  r_{b})  +  (R_{C}  +  R_{L})[(1  –  \alpha)r_{e}r_{b}  +  r_{e}(r_{b}  +  r_{c})]}}

6.9

Related Answered Questions