For the motor of Example 6.2, determine (a) the load component I_2 of the stator current, the electromechanical torque T_{mech}, and the electromechanical power P_{mech} for a slip s = 0.03; (b) the maximum electromechanical torque and the corresponding speed; and (c) the electromechanical starting torque T_{start} and the corresponding stator load current I_{2,start}.
First reduce the circuit to its Thevenin-equivalent form. From Eq. 6.29,
\hat{V}_{1,eq} =\hat{V}_1\left(\frac{j X_m}{R_1 + j(X_1 + X_m)}\right) \quad \quad \quad (6.29)
V_{1,eq} = 122.3 V and from Eq. 6.31,
Z_{1,eq}= \frac{j X_m(R_1 + jX_1)}{R_1 + j(X_1 + X_m)} \quad \quad \quad (6.31)
R_{1,eq} + jX_{1,eq} = 0.273 + j0.490 Ω.
a. At s = 0.03, R_2/s = 4.80. Then, from Fig. 6.13a,
I_{2}=\frac{V_{1, \text { eq }}}{\sqrt{\left(R_{1, \text { eq }}+R_{2} / s\right)^{2}+\left(X_{1, \text { eq }}+X_{2}\right)^{2}}}=\frac{122.3}{\sqrt{(5.07)^{2}+(0.699)^{2}}}=23.9 \mathrm{~A}
From Eq. 6.25
T_{\text {mech }}=\frac{P_{\text {mech }}}{\omega_{\mathrm{m}}}=\frac{P_{\text {gap }}}{\omega_{\mathrm{s}}}=\frac{n_{\text {ph }} I_{2}^{2}\left(R_{2} / s\right)}{\omega_{\mathrm{s}}} \quad \quad \quad (6.25)
T_{\text {mech }}=\frac{n_{\text {ph }} I_{2}^{2}\left(R_{2} / s\right)}{\omega_{\mathrm{s}}}=\frac{3 \times 23.9^{2} \times 4.80}{125.7}=65.4 \mathrm{~N} \cdot \mathrm{m}
and from Eq. 6.21
P_{\text {mech }}=n_{\mathrm{ph}} I_{2}^{2}R_{2}\left(\frac{1-s}{s}\right) \quad \quad \quad (6.21)
P_{\text {mech }}=n_{\mathrm{ph}} I_{2}^{2}\left(R_{2} / s\right)(1-s)=3 \times 23.9^{2} \times 4.80 \times 0.97=7980 \mathrm{~W}
The curves of Fig. 6.15 were computed by repeating these calculations for a number of assumed values of s.
b. At the maximum-torque point, from Eq. 6.35,
\begin{aligned}s_{\operatorname{maxT}} & =\frac{R_{2}}{\sqrt{R_{\mathrm{l}, \mathrm{eq}}^{2}+\left(X_{1, \mathrm{eq}}+X_{2}\right)^{2}}} \\& =\frac{0.144}{\sqrt{0.273^{2}+0.699^{2}}}=0.192\end{aligned}
and thus the speed at T_{max} is equal to (1 – s_{maxT})n_s = (1 – 0.192) × 1200 = 970 r/min
From Eq. 6.36
\begin{aligned}T_{\max } & =\frac{1}{\omega_{\mathrm{s}}}\left[\frac{0.5 n_{\mathrm{ph}} V_{1, \mathrm{eq}}^{2}}{R_{1, \mathrm{eq}}+\sqrt{R_{1, \mathrm{eq}}^{2}+\left(X_{1, \mathrm{eq}}+X_{2}\right)^{2}}}\right] \\& =\frac{1}{125.7}\left[\frac{0.5 \times 3 \times 122.3^{2}}{0.273+\sqrt{0.273^{2}+0.699^{2}}}\right]=175 \mathrm{~N} \cdot \mathrm{m}\end{aligned}
c. At starting, s = 1. Therefore
\begin{aligned}I_{2, \text { start }} & =\frac{V_{1, \mathrm{eq}}}{\sqrt{\left(R_{1, \mathrm{eq}}+R_{2}\right)^{2}+\left(X_{1, \mathrm{eq}}+X_{2}\right)^{2}}} \\& =\frac{122.3}{\sqrt{0.417^{2}+0.699^{2}}}=150 \mathrm{~A}\end{aligned}
From Eq. 6.25
T_{\mathrm{start}}=\frac{n_{\mathrm{ph}} I_{2}^{2} R_{2}}{\omega_{\mathrm{s}}}=\frac{3 \times 150^{2} \times 0.144}{125.7}=77.3 \mathrm{~N} \cdot \mathrm{m}