For the motor of Problem 8.A.2, assume that the stator impedance is given by
Z_{1}=1.86+j2.56\ \OmegaFind the internal mechanical power, output power, power factor, input power, developed torque, and efficiency, assuming that friction losses are 15 W.
We need the backward-field impedance
Z_{b}=\frac{j0.5X_{m}^{\prime}[0.5(R_{2}^{\prime}/(2-s))+j0.5X_{2}^{\prime}]}{0.5(R_{2}^{\prime}/(2-s))+j0.5(X_{2}^{\prime}+X_{m}^{\prime})} \\ ={\frac{j26.75[(1.78/1.95)+j1.3]}{(1.78/1.95)+j(1.3+26.75)}} \\ =0.8293+j1.2667\ \OmegaAs a result,
Z_{i}=Z_{1}+Z_{f}+Z_{b} \\ =\;15.089+j20.8067=25.7023\angle54.05\;\mathrm{deg}\;\OmegaThe input current is thus
I_{1}={\cfrac{V}{Z_{i}} =\frac{110\angle0}{25.7023\angle54.05}}=4.2798\angle-54.05~\mathrm{deg}{\mathrm{A}}The forward-gap power is
P_{g f}=|I_{1}|^{2}R_{f}=227.125\,\mathrm{W}The backward-gap power is
P_{g b}=|I_{1}|^{2}R_{b}=15.1899\,\mathrm{W}As a result, the internal mechanical power is
{{P_{m}=(1-s)(P_{g f}-P_{g b})}}\\ {{=201.338\,\mathrm{W}}}The output power is thus
P_{o}=201.338-15=186.338\,\mathrm{W}The power factor is given by
\mathrm{PF}=\cos54.05\,\mathrm{deg}=0.5871The input power is calculated as
P_{\mathrm{in}}=110(4.2798)(0.5871)=276.383\,\mathrm{W}As a result, the efficiency is
\eta={\frac{P_{\mathrm{o}}}{P_{\mathrm{in}}}}={\frac{186.338}{276.383}}=0.6742The synchronous speed is
n_{s}={\frac{120f}{P}}=1800\,\mathrm{rpm}The rotor speed in radls is thus
\omega_{r}={\frac{2\pi n_{s}}{60}}(1-s)=57\piThe torque output is given by
T_{o}={\frac{P_{o}}{\omega_{r}}}={\frac{186.338}{57\pi}}=1.0406\,\mathrm{N}\cdot\mathrm{m}