Question 17.PE.MCQ.21: Given a transistor with the following specifications: gm = 3......

Given a transistor with the following specifications: g_m = 38  mmhos, r_{b′e} = 5.9   kΩ, h_{ie} = 6  kΩ, r_{bb′} = 100 Ω, C_{b′c}= 12  pF, C_{b′e} = 63  pF, f_T= 80  MHz   and   h_{fe} = 224  at  1 kHz. What is the value of α-cutoff frequency and the value of common-emitter short circuit gain at that frequency?

(a) 95.91 MHz, 0.838 ∠0.21°

(b) 85.91 MHz, 0.838 ∠0.21°

(c) 95.91 MHz, 0.838 ∠−0.21°

(d) 85.91 MHz, 0.838 ∠−0.21°

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a)

f_{\alpha}=\frac{h_{\mathrm{fe}}}{2\pi r_{\mathrm{b′e}}C_{\mathrm{b′e}}}=\frac{224}{2\times\pi\times5.9\times10^{3}\times63\times10^{-12}}

=95.91   MHz

f_{\beta}={\frac{g_{\mathrm{b^{\prime}e}}}{2\pi(C_{\mathrm{b^{\prime}e}}+C_{\mathrm{b^{\prime}c}})}}

where

g_{\mathrm{b^{\prime}e}}={\frac{1}{r_{\mathrm{b^{\prime}e}}}}={\frac{1}{5.9\times10^{3}}}=1.69\times10^{-4}

Therefore,

f_{\beta}={\frac{1.69\times10^{-4}}{2\times\pi\times(63\times10^{-12}+~12\times10^{-12})}}

358.63{\mathrm{~kHz}}

The common-emitter short-circuit current gain is  given by

A_{\mathrm{i}}={\frac{-h_{\mathrm{fe}}}{1+j(f/f_{\beta})}}

For f=f_{\alpha},

A_{1}=-\frac{224}{1+j\left\{(95.91\times10^{6})/(358.63\times10^{3})\right\}}

=-{\frac{224}{1+267.43j}}

\left|A_{i}\right|={\frac{224}{\sqrt{1^{2}+(267.43)^{2}}}}=0.838

\begin{array}{c}{{\angle A_{\mathrm{i}}=90^{\circ}-\tan^{-1}(267.43)}}\\ {{=90^{\circ}-89.786^{\circ}=0.21^{\circ}}}\end{array}

Related Answered Questions

Question: 17.SG.Q.3

Verified Answer:

The capacitance is given by C=\frac{\vareps...
Question: 17.SG.Q.2

Verified Answer:

The capacitance is given by C=\frac{\vareps...