Question 4.3: Given the state vector, r = -6045I - 3490J + 2500K (km) v = ......

Given the state vector,

\begin{aligned}& r =-6045 \hat{ I }-3490 \hat{ J}+2500 \hat{ K }( km ) \\& v =-3.457 \hat{ I }+6.618 \hat{ J }+2.533 \hat{ K }( km / s )\end{aligned}

find the orbital elements h, i, Ω, e, ω, and θ using Algorithm 4.2.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Step 1:

r=\sqrt{ r \cdot r }=\sqrt{(-6045)^2+(-3490)^2+2500^2}=7414  km                 (a)

Step 2:

v=\sqrt{ v \cdot v }=\sqrt{(-3.457)^2+6.618^2+2.533^2}=7.884  km / s                  (b)

Step 3:

v_r=\cfrac{ v \cdot r }{r}=\cfrac{(-3.457) \cdot(-6045)+6.618 \cdot(-3490)+2.533 \cdot 2500}{7414}=0.5575  km / s

(c)

Since v_r > 0, the satellite is flying away from perigee.
Step 4:

h = r \times V =\left|\begin{array}{ccc}\hat{ I } & \hat{ J } & \hat{ K } \\-6045 & -3490 & 2500 \\-3.457 & 6.618 & 2.533\end{array}\right|=-25,380 \hat{ I }+6670 \hat{ J }-52,070 \hat{ K }\left( km ^2 / s \right)                         (d)

Step 5:

h=\sqrt{ h \cdot h }=\sqrt{(-25,380)^2+6670^2+(-52,070)^2}=\boxed{58,310  km ^2 / s}                     (e)

Step 6:

i=\cos ^{-1} \cfrac{h_Z}{h}=\cos ^{-1}\left(\cfrac{-52,070}{58,310}\right)=\boxed{153.2^{\circ}}                         (f)

Since i is greater than 90^{\circ}, this is a retrograde orbit.
Step 7:

N =\hat{ K } \times h =\left|\begin{array}{ccc}\hat{ I } & \hat{ J } & \hat{ K } \\0 & 0 & 1 \\-25,380 & 6670 & -52,070\end{array}\right|=-6670 \hat{ I }-25,380 \hat{ J }\left( km ^2 / s \right)                                              (g)

Step 8:

N=\sqrt{ N \cdot N }=\sqrt{(-6670)^2+(-25,380)^2}=26,250  km ^2 / s                             (h)

Step 9:

Q=\cos ^{-1} \cfrac{N_X}{N}=\cos ^{-1}\left(\cfrac{-6670}{26,250}\right)=104.7^{\circ} \text { or } 255.3^{\circ}

From Eqn (g) we know that N_Y < 0; therefore, Ω must lie in the third quadrant,

\boxed{Q=255.3^{\circ}}                         (i)

Step 10:

\begin{aligned}& e =\cfrac{1}{\mu}\left[\left(v^2-\cfrac{\mu}{r}\right) r -r v_r v \right] \\&= \cfrac{1}{398,600}\left[\left(7.884^2-\cfrac{398,600}{7414}\right)(-6045 \hat{ I }-3490 \hat{ J }+2500 \hat{ K })\right. \\&\quad-(7414)(0.5575)(-3.457 \hat{ I }+6.618 \hat{ J }+2.533 \hat{ K })] \\& e =-0.09160 \hat{ I }-0.1422 \hat{ J }+0.02644 \hat{ K }&\qquad\qquad (j)\end{aligned}

Step 11:

e=\sqrt{ e \cdot e}=\sqrt{(-0.09160)^2+(-0.1422)^2+(0.02644)^2}= \boxed{0.1712}                                 (k)

Clearly, the orbit is an ellipse.
Step 12:

\begin{aligned}\omega & =\cos ^{-1} \cfrac{ N \cdot e }{N e}=\cos ^{-1}\left[\cfrac{(-6670)(-0.09160)+(-25,380)(-0.1422)+(0)(0.02644)}{(26,250)(0.1712)}\right] \\& =20.07^{\circ} \text { or } 339.9^{\circ}\end{aligned}

ω lies in the first quadrant if e_Z > 0, which is true in this case, as we see from Eqn (j). Therefore,

\boxed{\omega=20.07^{\circ}}                         (l)

Step 13:

\begin{aligned}\theta & =\cos ^{-1}\left(\cfrac{ e \cdot r }{\text { er }}\right)=\cos ^{-1}\left[\cfrac{(-0.09160)(-6045)+(-0.1422) \cdot(-3490)+(0.02644)(2500)}{(0.1712)(7414)}\right] \\& =28.45^{\circ} \text { or } 331.6^{\circ}\end{aligned}

From Eqn (c) we know that v_r > 0, which means 0 \leq \theta<180^{\circ}. Therefore,

\boxed{\theta=28.45^{\circ}}

Having found the orbital elements, we can go on to compute other parameters. The perigee and apogee radii are

\begin{aligned}r_{ p } & =\cfrac{h^2}{\mu} \cfrac{1}{1+e \cos (0)}=\cfrac{58,310^2}{398,600} \cfrac{1}{1+0.1712}=7284  km \\\\r_{ a } & =\cfrac{h^2}{\mu} \cfrac{1}{1+e \cos \left(180^{\circ}\right)}=\cfrac{58,310^2}{398,600} \cfrac{1}{1-0.1712}=10,290  km\end{aligned}

From these it follows that the semimajor axis of the ellipse is

a=\cfrac{1}{2}\left(r_{ p }+r_{ a }\right)=8788  km

This leads to the period,

T=\cfrac{2 \pi}{\sqrt{\mu}} a^{\frac{3}{2}}=2.278  h

The orbit is illustrated in Figure 4.8.

4.8

Related Answered Questions