Question 6.3.3: Humid air at 75°C, 1.1 bar, and 30% relative humidity is fed......

Humid air at 75°C, 1.1 bar, and 30% relative humidity is fed into a process unit at a rate of 1000 m³ /h.
Determine (1) the molar flow rates of water, dry air, and oxygen entering the process unit, (2) the molal humidity, absolute humidity, and percentage humidity of the air, and (3) the dew point.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

1.                       h_{r}(\%) = 100p_{H_{2}O} / p^{*}_{H_{2}O} (75°C)

\left. \Large{\Downarrow} \right. \begin{matrix} h_{r}= 30\% \\ p^{*}_{H_{2}O} (75°C)= 289  mm  Hg (from  Table  B.3) \end{matrix} \\ p_{H_{2}O} = (0.3)(289  mm  Hg)= 86.7  mm  Hg \\ \left. \Large{\Downarrow} \right. \begin{matrix} y_{H_{2}O} =p_{H_{2}O}/P \\ P= 1.1  bar \Longrightarrow 825  mm  Hg \end{matrix} \\ y_{H_{2}O} = (86.7  mm  Hg)/(825  mm  Hg) = 0.105  mol  H_{2}O/mol

The molar flow rate of wet air is given by the ideal-gas equation of state as

\dot{n} = P\dot{V} / RT = \begin{array}{c|c|c}1000  m^{3}& 1.1  bar& kmol\cdot K \\ \hline h &348  K& 0.0831  m^{3} \cdot bar\end{array} = 38.0 \frac{kmol}{h}

Consequently,

\begin{matrix} \dot{n}_{H_{2}O} = \begin{array}{c|c}38.0  kmol& 0.105  kmol  H_{2}O \\ \hline h &kmol\end{array} = \boxed{3.99  \frac{kmol  H_{2}O}{h}} \\\\ \dot{n}_{BDA} = \begin{array}{c|c}38.0  kmol& (1  –  0.105)  kmol  BDA \\ \hline h &kmol\end{array} = \boxed{34.0  \frac{kmol  BDA}{h}} \\\\ \dot{n}_{O_{2}} = \begin{array}{c|c}34.0  kmol  BDA& 0.21  kmol  O_{2} \\ \hline h &kmol  BDA\end{array} = \boxed{7.14  \frac{kmol  O_{2}}{h}}\end{matrix}

2.                        h_{m}= \frac{p_{H_{2}O}}{P  –  p_{H_{2}O}} = \frac{86.7  mm  Hg}{(825  –  86.7)  mm  Hg} = \boxed{0.117  \frac{mol  H_{2}O}{mol BDA} }

The same result could have been obtained from the results of Part 1 as (3.99 kmol H_{2}O/h)=(34.0 kmol BDA/h).

h_{a}= \begin{array}{c|c|c}0.117  kmol  H_{2}O &18.0  kg  H_{2}O& 1  kmol  BDA \\ \hline kmol  BDA &kmol  H_{2}O &29.0  kg  BDA\end{array} = \boxed{0.0726  \frac{kg  H_{2}O}{kg  BDA}} \\ h^{*}_{m} = \frac{p^{*}_{H_{2}O}}{P  –  p^{*}_{H_{2}O}} = \frac{289  mm  Hg}{(825  –  289)  mm  Hg} = 0.539  \frac{kmol  H_{2}O}{kmol  BDA}\\ h_{p}= 100h_{m}/h^{*}_{m} =(100)( 0.117) /(0.539) = \boxed{21.7\%}
\begin{matrix} \pmb{3.}  p_{H_{2}O} = 86.7  mm  Hg = p_{H_{2}O}^{*} (T_{dp})\\ \left. \Large{\Downarrow} \right. Table  B.3 \\ \boxed{T_{dp} =48.7°C }\end{matrix}

Related Answered Questions