If Φ = x³y + xy² + 3y find
(a) ∇Φ
(b) \nabla\phi|_{(0,0,0)}
(c) |∇Φ| at (1, 1, 1)
(a) If Φ = x³y + xy² + 3y then
\frac{\partial\phi}{\partial x}=3x^{2}y+y^{2}
{\frac{\partial\phi}{\partial y}}=x^{3}+2x y+3
\frac{\partial\phi}{\partial{{{z}}}}=0
so that
\nabla\phi=(3x^{2}y+y^{2})\mathbf{i}+(x^{3}+2x y+3)\mathbf{j}+0\mathbf{k}
(b) At (0,0,0),\nabla\phi=0\mathbf{i}+3\mathbf{j}+0\mathbf{k}=3\mathbf{j}.
(c) At (1,1,1),\nabla\phi=(3\times1^{2}\times1+1)\mathbf{i}+(1^{3}+2\times1\times1+3)\mathbf{j}+0\mathbf{k}=4\mathbf{i}+6\mathbf{j}+0\mathbf{k} so that |\nabla\phi|{\mathrm{~at~}}(1,1,1) is equal to {\sqrt{4^{2}+6^{2}}}={\sqrt{52}}.