Question 3.5.7: If f(x) = loge(1 - x) and g(x) = [x] then find: (i) (f + g)(......

If f(x)=\log _{e}(1-x) and g(x)=[x] then find:

(i) (f+g)(x)\qquad (ii) (f g)(x)\qquad (iii) \left(\frac{f}{g}\right)(x)\qquad (iv) \left(\frac{g}{f}\right)(x) .

Also find (f+g)(-1),(f g)(0),\left(\frac{f}{g}\right)(-1),\left(\frac{g}{f}\right)\left(\frac{1}{2}\right) .

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Clearly, \log _{e}(1-x) is defined only when 1-x>0 , i.e., x<1 .

\therefore \quad \operatorname{dom}(f)=(-\infty, 1) \text {. }

Also, \operatorname{dom}(g)=R .

\therefore \quad \operatorname{dom}(f) \cap \operatorname{dom}(g)=(-\infty, 1) \cap R=(-\infty, 1) .

(i) (f+g)(-\infty, 1) \rightarrow R is given by

(f+g)(x)=f(x)+g(x)=\log _{e}(1-x)+[x]

(ii) (f g):(-\infty, 1) \rightarrow R is given by

(f g)(x)=f(x) \times g(x)=\left\{\log _{e}(1-x)\right\} \times[x] .

(iii) \{x: g(x)=0\}=\{x:[x]=0\}=[0,1) .

\begin{aligned}\therefore \quad \operatorname{dom}\left(\frac{f}{g}\right) & =\operatorname{dom}(f) \cap \operatorname{dom}(g)-\{x: g(x)=0\} \\& =(-\infty, 1) \cap R-[0,1)=(-\infty, 0) .\end{aligned}

\therefore \quad \frac{f}{g}:(-\infty, 0) \rightarrow R is given by

\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{\log _{e}(1-x)}{[x]} .

(iv) \{x: f(x)=0\}=\left\{x: \log _{e}(1-x)=0\right\}=\{0\} .

\begin{array}{l} \therefore \quad \operatorname{dom}\left(\frac{g}{f}\right)=\operatorname{dom}(g) \cap \operatorname{dom}(f)-\{x: f(x)=0\}\\  \\=R \cap(-\infty, 1)-\{0\}=(-\infty, 0) \cup(0,1) .\\  \\\therefore \quad \frac{g}{f}:(-\infty, 0) \cup(0,1) \rightarrow R \text { is given by } \\  \\\left(\frac{g}{f}\right)(x)=\frac{g(x)}{f(x)}=\frac{[x]}{\log _{e}(1-x)} .\end{array}

Now, we have:

\begin{array}{l}(f+g)(-1)=f(-1)+g(-1)=[-1]+\log _{e}(1+1)=\left(\log _{e} 2\right)-1 .\\  \\(f g)(0)=f(0) \times g(0)=\log _{e}(1-0) \times[0]=\left(\log _{e} 1 \times 0\right)=(0 \times 0)=0 .\\  \\\left(\frac{f}{g}\right)(-1)=\frac{f(-1)}{g(-1)}=\frac{[-1]}{\log _{e}(1+1)}=\frac{-1}{\log _{e} 2} . \\  \\\left(\frac{g}{f}\right)\left(\frac{1}{2}\right)=\frac{g\left(\frac{1}{2}\right)}{f\left(\frac{1}{2}\right)}=\frac{\left[\frac{1}{2}\right]}{\log _{e}\left(1-\frac{1}{2}\right)}=\frac{[0.5]}{\log _{e}\left(\frac{1}{2}\right)}=0 .\end{array}

Related Answered Questions

Question: 3.5.13

Verified Answer:

Let f: R \rightarrow R: f(x) and ...
Question: 3.5.12

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.11

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.10

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.9

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.8

Verified Answer:

Let f: R \rightarrow R: f(x)=x be...