Question 15.10.2: If the atmospheric pressure is 535 mm of mercury, find the t......

If the atmospheric pressure is 535 mm of mercury, find the temperature at which water will boil. Latent heat of vaporisation of water is 545.5 cal/g.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.
\begin{array}{l}P_{1}=535 \mathrm{~mm} \mathrm{~Hg} \quad ; \quad P_{2}=1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{~Hg} \\  \\ \mathrm{T}_{1}=? \quad ; \quad \mathrm{T}_{2}=100+273=373 \mathrm{~K}\\  \\ \Delta \mathrm{H}_{\mathrm{v}}=545.5 \mathrm{~cal} / \mathrm{g}=545.5 \times 18 \mathrm{~cal} / \mathrm{mol}=9819 \mathrm{~cal} \mathrm{~mol}^{-1} \\  \\ \mathrm{R}=1.987 \mathrm{~cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\  \\ \log \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{\Delta \mathrm{H}_{\mathrm{V}}}{2.303 \mathrm{R}}\left[\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{2} \mathrm{~T}_{1}}\right] \\  \\ \log \frac{760}{535}=\frac{9819 \mathrm{~cal} \mathrm{~mol}^{-1}}{2.303 \times 1.987 \mathrm{~cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{373}\right] \\  \\ \frac{1}{\mathrm{~T}_{1}}-\frac{1}{373}=\frac{0.1524 \times 2.303 \times 1.987}{9819}=0.00007102\\  \\ \text { or } \frac{1}{\mathrm{~T}_{1}}-0.002681 \mathrm{~K}^{-1}=0.00007102 \mathrm{~K}^{-1} \\  \\ \mathrm{~T}_{1}=\frac{1}{0.00275202}=363.37 \mathrm{~K} \end{array}

Related Answered Questions

Question: 15.8.1

Verified Answer:

\Delta \mathrm{G}=2.303 \mathrm{~nRTlog} \f...