Question 4.5 : If the DCM for the transformation from xyz to x′ y′ z ′ is......

If the DCM for the transformation from xyz to x^{′} y^{′}  z^{′}   is

[ Q] = \begin{bmatrix}  0.64050  & 0.75319  & -0.15038 \\ 0.76736  & – 0.63531 &  -0.086824  \\ -0.030154  & -0.17101 &  -0.98481 \end{bmatrix}

find the angles α, β, and γ of the classical Euler sequence.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Use Algorithm 4.3

Step 1:

\alpha=\tan^{-1}\left({\frac{Q_{31}}{-Q_{32}}}\right)=\tan^{-1}\left({\frac{-0.030154}{-[-0.17101]}}\right)

Since the numerator is negative and the denominator is positive, α must lie in the fourth quadrant. Thus

\tan^{-1}\left({\frac{-0.030154}{-1[-0.17101]}}\right)=\tan^{-1}(-0.1763)=-10^{\circ}\Rightarrow  α = 350°

Step 2:

\beta=\cos^{-1}Q_{33}=\cos^{-1}(-0.98481)=170.0°

Step 3:

\gamma=\tan^{-1}\!{\frac{Q_{13}}{Q_{23}}}=\tan^{-1}\left({\frac{-0.15038}{0.086824}}\right)

The numerator is negative and the denominator is positive, so γ lies in the fourth quadrant,

\tan^{-1}\left({\frac{-0.15038}{0.086824}}\right)=\tan^{-1}(-0.17320)=-60^{\circ}\Rightarrow  γ = 300°

Related Answered Questions