Question 26.16: If the thin-walled composite beam of Example 26.15 is subjec......

If the thin-walled composite beam of Example 26.15 is subjected to a bending moment of 0.5 kNm applied in a horizontal plane, calculate the maximum value of direct stress in the beam section.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The second moments of area are, from Ex. 26.15,

\begin{array}{l c r}{{I_{X X}^{\prime}=2.63\times10^{10}\mathrm{Nmm^{2}}}}\\ {{I_{Y Y}^{\prime}=0.83\times10^{10}\mathrm{Nmm^{2}}}}\\ {{I_{X Y}^{\prime}=1.25\times10^{10}\mathrm{Nmm^{2}}}}\end{array}

Also M_{X}=0\mathrm{~and~}M_{Y}=0.5\mathrm{~kNm} so that Eq. (26.68) becomes

\sigma_{Z}=E_{Z,i}\Biggl[\left({\frac{M_{Y}I_{X X}^{\prime}-M_{X}I_{X Y}^{\prime}}{I_{X X}^{\prime}I_{Y Y}^{\prime}-I_{X Y}^{\prime 2}}}\right)X+\left({\frac{M_{X}I_{Y Y}^{\prime}-M_{Y}I_{X Y}^{\prime}}{I_{X X}^{\prime}I_{Y Y}^{\prime}-I_{~X Y}^{\prime 2}}}\right)Y\Biggr]         (26.68)

\sigma_{z}=E_{z,i}\left(2.12\times10^{-4}\,X-1.01\times10^{-4}\,Y\right)         (i)

On the top flange, E_{z,I}=50~{\mathrm{000~N/mm}}^{2}~{\mathrm{and~}}Y=50~{\mathrm{mm}}. Then, from Eq. (i),

\sigma_{z}=10.6\,X-252.5

so that at 1 where X=50 mm,

\sigma_{z,1}=277.5\,\mathrm{N/mm^{2}}

and at 2 where X=0,

\sigma_{z,2}=-252.5\,\mathrm{N/mm^{2}}

In the web E_{z,i}=15\ 000\ \mathrm{N/mm^{2}~a n d}\ X=0. Then

\sigma_{z}=-1.52\,Y

At 2,

\sigma_{z,2}=-1.52\times50=-76.0\,\mathrm{N/mm^{2}}

The maximum direct stress is therefore 277.5 N/mm² and occurs at point 1.

Related Answered Questions