Question 30.2: In a humidification apparatus, liquid water flows in a thin ......

In a humidification apparatus, liquid water flows in a thin film down the outside of a vertical, circular cylinder. Dry air at 310 K and 1.013\times10^{5}\,{\mathrm{Pa}}\,(1.0\ {\mathrm{atm}}) flows at right angles to the 0.076-m-diameter, 1.22-m-long vertically aligned cylinder at a velocity of 4.6 m/s. The liquid film temperature is 290 K. Calculate the rate at which liquid must be supplied to the top of the cylinder if the entire surface of the cylinder is to be used for the evaporating process and no water may drip off from the bottom of the cylinder.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The liquid film on the outside of the cylinder represents the source for mass transfer, and the air stream flowing normal to the cylinder represents an infinite sink. The properties of the air stream are evaluated at the film-average temperature of 300 K. The properties of air may be obtained from Appendix I, with \rho=1.1769\;{\mathrm{kg/m}}^{3}\;{\mathrm{and}}\;\nu=1.5689\;\times\;10^{-5}\;{\mathrm{m}}^{2}/s at 300 K and 1 atm. The Reynolds number is

\mathrm{Re}_{D}={\frac{\mathrm{v_{\infty }.D}}{\nu_{\mathrm{air}}}}={\frac{(4.6\,\mathrm{m/s})(0.076\,\mathrm{m})}{1.5689\times10^{-5}\,\mathrm{m/\!/s}}}=22.283

From Appendix J, Table J.1, the diffusion coefficient of water vapor in air at 298 K and 1.0 atm is 2.6\times10^{-5}\,\mathrm{m}^{2}/s, which, corrected for temperature, becomes

D_{A B}=\left(2.60\times10^{-5}\,\mathrm{m}^{2}/s\right)\left(\frac{300\,\mathrm{K}}{298\,\mathrm{K}}\right)^{3/2}=2.63\times10^{-5}\,\mathrm{m}^{2}/s

The Schmidt number is

\mathrm{Sc}={\frac{\nu_{\mathrm{air}}}{D_{A B}}}={\frac{1.5689\times10^{-5}~\mathrm{m^{2}/s}}{2.63\times10^{-5}~\mathrm{m^{2}/s}}}=0.60

The superficial molar velocity of the air normal to the cylinder is

G_{M}=\frac{\mathrm{v_{\infty }.}\rho_{\mathrm{air}}}{M_{\mathrm{air}}}=\frac{(4.6\ \mathrm{m/s})(1.1769\,\mathrm{kg/m^{3}})}{(29\,\mathrm{kg/kg\,mole})}= 0.187{\frac{\mathrm{kgmole}}{{\mathrm{m^{2}}{\mathrm{s}}}}}

Upon substitution of the known values into equation (30-16), we can solve for the gas-phase film mass-transfer coefficient:

k_{G}=\frac{G_{M}}{P S c^{0.56}}0.281(\mathrm{Re}_{D})^{-0.4}

or

k_{G}={\frac{0.281(0.187\,{\mathrm{kgmole}}/m^{2}\cdot{\mathrm{s}})(22.283)^{-0.4}}{\left(1.013\times10^{5}\,{\mathrm{Pa}}\right)(0.60)^{0.56}}} = 26\times10^{-8}{\frac{\mathrm{~kgmole}}{{\mathrm{~m}}^{2}\cdot{\mathrm{s}}\cdot{\mathrm{Pa}}}}

The flux of water can be evaluated by

N_{A}=k_{G}{\bigl(}p_{A s}-p_{A,\infty }{\bigr)}

The vapor pressure of water at 290 K is 1.73\times10^{3}\,\mathrm{Pa}\,(p_{A s}=P_{A}), and the partial pressure of the dry air (p_{A∞}) is zero, as the surrounding air stream is assumed to be an infinite sink for mass transfer. Consequently,

N_{A}=\left(1.26\times10^{-8}{\frac{{\mathrm{kgmole}}}{{\mathrm{m}}^{2}\cdot{\mathrm{s}}\cdot{\mathrm{Pa}}}}\right)\left(1.73\times10^{3}\,{\mathrm{Pa}}-0\right)=2.18\times10^{-5}{\frac{{\mathrm{kgmole}}}{{\mathrm{m}}^{2}\cdot{\mathrm{s}}}}

Finally, the mass-feed rate of water for a single cylinder is the product of the flux, and the external surface area of the cylinder is

W_{A}=N_{A}M_{A}(\pi D L)\,=\,\left(2.18\times10^{-5}{\frac{{\mathrm{kgmole}}}{{\mathrm{m^{2}}}\cdot{\mathrm{s}}}}\right)\left({\frac{18\,\mathrm{kg}}{{\mathrm{kgmole}}}}\right)(\pi)(0.076\,\mathrm{m})(1.22\,\mathrm{m})

=\;1.14\times10^{-4}\,\mathrm{kg/s}

Appendix L

The Error Function^1
\phi erf \phi \phi erf \phi
0 0.0 0.85 0.7707
0.025 0.0282 0.90 0.7970
0.05 0.0564 0.95 0.8209
0.10 0.1125 1.0 0.8427
0.15 0.1680 1.1 0.8802
0.20 0.2227 1.2 0.9103
0.25 0.2763 1.3 0.9340
0.30 0.3286 1.4 0.9523
0.35 0.3794 1.5 0.9661
0.40 0.4284 1.6 0.9763
0.45 0.4755 1.7 0.9838
0.50 0.5205 1.8 0.9891
0.55 0.5633 1.9 0.9928
0.60 0.6039 2.0 0.9953
0.65 0.6420 2.2 0.9981
0.70 0.6778 2.4 0.9993
0.75 0.7112 2.6 0.9998
0.80 0.7421 2.8 0.9999
^1 J. Crank, The Mathematics of Diffusion, Oxford University Press, London, 1958.

Table J.1 Binary mass diffusivities in \mathrm{gascs}^{\dagger}

System T ( K ) D_{ABP} ( cm² atm / s ) D_{ABP} ( m² Pa / s )
Air
Ammonia 273 0.198 2.006
Aniline 298 0.0726 0.735
Benzene 298 0.0962 0.974
Bromine 293 0.091 0.923
Carbon dioxide 273 0.136 1.378
Carbon disulfide 273 0.0883 0.894
Chlorine 273 0.124 1.256
Diphenyl 491 0.160 1.621
Ethyl acetate 273 0.0709 0.718
Ethanol 298 0.132 1.337
Ethyl ether 293 0.0896 0.908
Iodine 298 0.0834 0.845
Methanol 298 0.162 1.641
Mercury 614 0.473 4.791
Naphthalene 298 0.0611 0.619
Nitrobenzene 298 0.0868 0.879
n – Octane 298 0.0602 0.610
Oxygen 273 0.175 1.773
Propyl acetate 315 0.092 0.932
Sulfur dioxide 273 0.122 1.236
Toluene 298 0.0844 0.855
Water 298 0.260 2.634
Ammonia
Ethylene 293 0.177 1.793
Argon
Neon 293 0.329 3.333
Carbon dioxide
Benzene 318 0.0715 0.724
Carbon disulfide 318 0.0715 0.724
Ethyl acetate 319 0.0666 0.675
(continued)

 

Table J.1 (Continued)
System T ( K ) D_{ABP} ( cm² atm / s ) D_{ABP} ( m² Pa / s )
Ethanol 273 0.0693 0.702
Ethyl ether 273 0.0541 0.548
Hydrogen 273 0.550 5.572
Methane 273 0.153 1.550
Methanol 298.6 0.105 1.064
Nitrogen 298 0.165 1.672
Nitrous oxide 298 0.117 1.185
Propane 298 0.0863 0.874
Water 298 0.164 1.661
Carbon monoxide
Ethylene 273 0.151 1.530
Hydrogen 273 0.651 6.595
Nitrogen 288 0.192 1.945
Oxygen 273 0.185 1.874
Helium
Argon 273 0.641 6.493
Benzene 298 0.384 3.890
Ethanol 298 0.494 5.004
Hydrogen 293 1.64 16.613
Neon 293 1.23 12.460
Water 298 0.908 9.198
Hydrogen
Ammonia 293 0.849 8.600
Argon 293 0.770 7.800
Benzene 273 0.317 3.211
Ethane 273 0.439 4.447
Methane 273 0.625 6.331
Oxygen 273 0.697 7,061
Water 293 0.850 8.611
Nitrogen
Ammonia 293 0.241 2.441
Ethylene 298 0.163 1.651
Hydrogen 288 0.743 7.527
Iodine 273 0.070 0.709
Oxygen 273 0.181 1.834
Oxygen
Ammonia 293 0.253 2.563
Benzene 296 0.0939 0.951
Ethylene 293 0.182 1.844

^†R. C. Reid and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York, 1958, Chapter 8.

Related Answered Questions