Question 6.3: In the CB amplifier of Fig. 6-6(b), let hib = 30 Ω, hrb = 4 ......

In the CB amplifier of Fig. 6-6(b), let h_{ib} = 30  Ω,  h_{rb} = 4 × 10^{-6},  h_{fb} = -0.99,  h_{ob} = 8 × 10^{-7}  S, and R_L = 20  kΩ.   (These are typical CB amplifier values.)    Find expressions for the    (a) current-gain ratio A_i,    (b) voltage-gain ratio A_v,    (c) input impedance Z_{in}, and    (d) output impedance Z_o.    (e) Evaluate this typical CE amplifier.

6.6
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) By direct analogy with Fig. 6-5(b) and (6.43)

A_{i} = {\frac{i_{L}}{i_{b}}} = -{\frac{h_{fe}}{1  +  h_{oe}R_{L}}} = -{\frac{100}{1  +  \left(12  \times  10^{-6}\right)(2  \times  10^{3})}} = -97.7          (6.43)
A_{i} = -{\frac{h_{f b}}{1  +  h_{o b}R_{L}}} = -{\frac{-0.99}{1  +  (8  \times  10^{-7})(20  \times  10^{3})}} = 0.974                        (6.51)

Note that A_{i} \approx -h_{fb} \lt 1, and that the input and output currents are in phase because h_{fb} < 0.

(b) By direct analogy with Fig. 6-5(b) and (6.46),

A_{v} = {\frac{v_{s}}{v_{c e}}} = -{\frac{h_{fe}R_{L}}{h_{ie}  +  R_{L}(h_{ie} h_{o e}  –  h_{fe}h_{r e})}}
= -{\frac{(100)(2  \times  10^{3})}{1  \times  10^{3}  +  (2  \times  10^{3})[(1  \times  10^{3})(12  \times  10^{-6})  –  (100)(1  \times  10^{-4})]}} = -199.2                 (6.46)

A_{v} = -\frac{h_{f b}R_{L}}{h_{i b}  +  R_{L}(h_{i b}h_{o c}  –  h_{f b}h_{r b})} = -\frac{(-0.99)(20  \times  10^{3})}{30  +  (20  \times  10^{3})[(30)(8  \times  10^{-7})  –  (-0.99)(4  \times  10^{-6})]} = 647.9                  (6.52)

Observe that A_{v} \approx -h_{f b}R_{L}/h_{i b}, and the output and input voltages are in phase because h_{fb} < 0.

(c) By direct analogy with Fig. 6-5(b) and (6.47)
Z_{\mathrm{in}} = {\frac{v_{s}}{i_{b}}} = h_{i e}  –  {\frac{h_{re}h_{f e}R_{L}}{1  +  h_{oe}R_{L}}} = 1  \times  10^{3}  –  {\frac{(1  \times  10^{-4})(100)(2   \times  10^{3})}{1  +  (12  \times  10^{-6})(2  \times  10^{3})}} = 980.5  \Omega                 (6.47)
Z_{\mathrm{in}} = h_{i b}  –  { \frac{h_{r b}h_{f b}R_{L}}{1  +  h_{o b}R_{L}}} = 30  –  {\frac{(4  \times  10^{-6})(-0.99)(20  \times  10^{3})}{1  +  (8  \times  10^{-7})(20  \times  10^{3})}} = 30.08\,\Omega                    (6.53)

It is apparent that Z_{\mathrm{in}}\approx h_{ib}.

(d) By analogy with Fig. 6-5(b) and (6.50),
Z_{o} = {\frac{v_{d p}}{i_{d p}}} = {\frac{1}{h_{o e}  –  h_{fe}h_{r e}/h_{i e}}} = {\frac{1}{12  \times  10^{-6}  –  (100)(1  \times  10^{-4})/(1  \times  10^{3})}} = 500\, Ω                 (6.50)
Z_{o} = {\frac{1}{h_{o b}  –  h_{fb}h_{r b}/h_{i b}}} = {\frac{1}{8  \times  10^{-7}  –  (-0.99)(4  \times  10^{-6})/30}} = 1.07\,\mathrm{MQ}                 (6.54)

Note that Z_{o} is decreased because of the feedback from the output mesh to the input mesh through h_{rb}v_{cb}.

(e) Based on the typical values of this example, the characteristics of the CB amplifier can be summarized as follows:
1. Current gain of less than 1
2. High voltage gain
3. Power gain approximately equal to voltage gain
4. No phase shift for current or voltage
5. Small input impedance
6. Large output impedance

6.5

Related Answered Questions