Question 6.4: In the CC amplifier of Fig. 6-7(b), let hic = 1 kΩ, hrc = 1,......

In the CC amplifier of Fig. 6-7(b), let h_{ic} = 1  kΩ,  h_{rc} = 1,  h_{fc} = -101,  h_{oc} = 12  μS, and R_L = 2  kΩ.    Drawing direct analogies with the CE amplifier of Example 6.2, find expressions for the    (a) current-gain ratio A_i,    (b) voltage-gain ratio A_v,    (c) input impedance Z_{in}, and    (d) output impedance Z_o.    (e) Evaluate this typical CC amplifier.

6.7
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) In parallel with (6.43),
A_{i} = {\frac{i_{L}}{i_{b}}} = -{\frac{h_{f e}}{1  +  h_{o e} R_{L}}} = -{\frac{100}{1  +  (12  \times  10^{-6})(2  \times  10^{3})}} = -97.7                (6.43)
A_{i} = -{\frac{h_{f c}}{1  +  h_{o c} R_{L}}} = -{\frac{-100}{1  +  (12  \times  10^{-6})(2  \times  10^{3})}} = 98.6                (6.55)

Note that A_{i} \approx -h_{f c}, and that the input and output currents are in phase because h_{fc} < 0.

(b) In parallel with (6.46),

A_{v} = {\frac{v_{s}}{v_{c e}}} = -{\frac{h_{fe}R_{L}}{h_{ie}  +  R_{L}(h_{ie} h_{o e}  –  h_{fe}h_{r e})}}
= -{\frac{(100)(2  \times  10^{3})}{1  \times  10^{3}  +  (2  \times  10^{3})[(1  \times  10^{3})(12  \times  10^{-6})  –  (100)(1  \times  10^{-4})]}} = -199.2                 (6.46)

A_{v} = -{\frac{h_{fc}R_{L}}{h_{ic}  +  R_{L}(h_{ic} h_{o c}  –  h_{fc}h_{r c})}} = -{\frac{(-101)(2  \times  10^{3})}{1  \times  10^{3}  +  (2  \times  10^{3})[(1  \times  10^{3})(12  \times  10^{-6})  –  (-101)(1)]}} = 0.995                 (6.56)

Observe that A_{v} \approx 1/(1  –  h_{ic}h_{oc}/h_{fc} )\approx 1.   Since the gain is approximately 1 and the output voltage is in phase with the input voltage, this amplifier is commonly called a unity follower.

(c) In parallel with (6.47),
Z_{\mathrm{in}} = {\frac{v_{s}}{i_{b}}} = h_{i e}  –  {\frac{h_{re}h_{f e}R_{L}}{1  +  h_{oe}R_{L}}} = 1  \times  10^{3}  –  {\frac{(1  \times  10^{-4})(100)(2   \times  10^{3})}{1  +  (12  \times  10^{-6})(2  \times  10^{3})}} = 980.5  \Omega                 (6.47)
Z_{\mathrm{in}} = h_{i c}  –  {\frac{h_{rc}h_{fc}R_{L}}{1  +  h_{oc}R_{L}}} = 1  \times  10^{3}  –  {\frac{(1)(-101)(2   \times  10^{3})}{1  +  (12  \times  10^{-6})(2  \times  10^{3})}} = 8.41  M\Omega                 (6.57)

Note that Z_{\mathrm{in}} \approx -h_{fc}/h_{oc}.

(d) In parallel with (6.50),
Z_{o} = {\frac{v_{d p}}{i_{d p}}} = {\frac{1}{h_{o e}  –  h_{fe}h_{r e}/h_{i e}}} = {\frac{1}{12  \times  10^{-6}  –  (100)(1  \times  10^{-4})/(1  \times  10^{3})}} = 500\, Ω                 (6.50)
Z_{o} = {\frac{1}{h_{o c}  –  h_{fc}h_{r c}/h_{ic}}} = {\frac{1}{12  \times  10^{-6}  –  (-101)(1)/(1  \times  10^{3})}} = 9.9\, Ω

Note that Z_{o} \approx -h_{ic}/h_{fc}.

(e) Based on the typical values of this example, the characteristics of the CB amplifier can be summarized as follows:
1. High current gain
2. Voltage gain of approximately unity
3. Power gain approximately equal to current gain
4. No current or voltage phase shift
5. Large input impedance
6. Small output impedance

Related Answered Questions