In the circuit of Fig. 1, apply Millman’s theorem to find Thevenin’s equivalent at A-B. Hence, find \overline{Z}_L for maximum power transfer.
Let us remove \overline{Z}_L and redraw the circuit of Fig. 1 as shown in Fig. 2. In the circuit of Fig. 2, each voltage source has a series impedance which can be considered as internal impedance of the source.
Therefore, the parallel connected voltage sources with internal impedance can be converted into a single equivalent source using Millman’s theorem.
Let, \overline{E}_{\mathrm{eq}}\ = Equivalent emf of parallel connected sources.
\overline{Z}_{\mathrm{eq}}\ = Equivalent internal impedance.
Now by Millman’s theorem,
\overline{{{Z}}}\mathrm{eq}\,=\,\frac{1}{\frac{1}{\overline{{{Z}}}_{1}}+\frac{1}{\overline{{{Z}}}_{2}}}\,=\,\frac{1}{\frac{1}{4+\mathrm{j}4}+\frac{1}{2-\mathrm{j}6}}
=\left[(4+\mathrm{j}4)^{-1}+(2-\mathrm{j}6)^{-1}\right]^{-1}=\,5.6-\mathrm{j}0.8\,\Omega
\overline{E}_{\mathrm{eq}}\;=\;\left(\frac{\overline{E}_{1}}{\overline{Z}_{1}}+\frac{\overline{E}_{2}}{\overline{Z}_{2}}\right)\overline{{{Z}}}_{\mathrm{eq}}\;=\;\left(\frac{20\angle0^{\circ}}{4+j4}+\frac{12\angle\ 90^{\circ}}{2-j6}\right)\times\left(5.6-j0.8\right)
=\,\Big(\frac{20}{4+\mathrm{j}4}+\frac{\mathrm{j}12}{2-\mathrm{j}6}\Big)\times\big(5.6-\mathrm{j0.8}\big)\,=\,\big(0.7-\mathrm{j}1.9\big)\times\big(5.6-\mathrm{j0.8}\big) =\;2.4-\mathrm{j}11.2\;=\;1.4543∠-77.9^{\circ}VNow, the parallel connected sources in Fig. 2 can be represented as shown in Fig. 3 by Millman’s theorem.
\overline{ E}_{\mathrm{eq}}\;=\;\overline{ V}_{\mathrm{th}} \ ; \ \overline{ Z}_{\mathrm{eq}}\;=\;\overline{ Z}_{{th}}∴ \overline{{{\mathrm{V}}}}_{\mathrm{th}}\,=\,2.4\,{-}\,\mathrm{j}\,1\,1.2\,V\,=\,1.45432∠-77.9^{\circ}\,V
\overline{{{ Z}}}_{\mathrm{th}}\;=\;5.6-j0.8\;\Omega\;The Thevenin’s equivalent of the given circuit at terminals A-B is shown in Fig. 4. Let us connect the load impedance \overline{Z}_L at terminals A-B of Thevenin’s equivalent as shown in Fig. 5. Now, by maximum power transfer theorem, for maximum power transfer to\overline{Z}_L , the value of \overline{Z}_L should be conjugate of \overline{Z}_{th} .
\overline{{{Z}}}_{\mathrm{L}}~=~\overline{{{Z}}}_{\mathrm{th}}^{*}~=~(5.6{-}\,\mathrm{j0}.8)^{*}~=~5.6{+}\,\mathrm{j0.8~}\Omega