Question 2.Q.62: In the circuit of Fig. 1, calculate Vx. Prove the reciprocit......

In the circuit of Fig. 1, calculate V_x. Prove the reciprocity theorem by interchanging the positions of the 12 A source and V_x.

1
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Case i : To solve V_x in the given circuit Let us assume three node voltages as shown in Fig. 2. Now the response V_x=V_2. With reference to Fig. 2, the node basis matrix equation is,

\begin{bmatrix} {{\frac{1}{4}+\frac{1}{10}}+\frac{1}{2} }&{{-\frac{1}{4}}}&-\frac{1}{4}\\ -\frac{1}{4}&{\frac{1}{4}+\frac{1}{1}}+\frac{1}{5} &-\frac{1}{5} \\ -\frac{1}{2}&-\frac{1}{5}&\frac{1}{5}+\frac{1}{2}+\frac{1}{2} \end{bmatrix} \begin{bmatrix} V _{1} \\ V _{2} \\V _{3} \end{bmatrix} =\begin{bmatrix} 12 \\ 0\\0 \end{bmatrix}

\begin{bmatrix} {0.85 }&-0.25&-0.5\\ -0.25 &1.45&-0.2\\ -0.5&-0.2&1.2 \end{bmatrix} \begin{bmatrix} V _{1} \\ V _{2} \\V _{3} \end{bmatrix} =\begin{bmatrix} 12 \\ 0\\0 \end{bmatrix} ………….(1)

\Delta ^{\prime}=\begin{vmatrix} {0.85 }&-0.25&-0.5\\ -0.25 &1.45&-0.2\\ -0.5&-0.2&1.2 \end{vmatrix} =0.85\times[(1.45\times1.2)-(-0.2)^{2}]-(-0.25)\times\left[(-0.25\times1.2)-(-0.5\times(-0.2))\right]+(-0.5)\times[(-0.25\times(-0.2))-(-0.5\times1.45)]=1.445-0.1 -0.3875=0.9575

\Delta ^{\prime}_2=\begin{vmatrix} {0.85 }&12&-0.5\\ -0.25 &0&-0.2\\ -0.5&0&1.2 \end{vmatrix} =\;0-12\times\bigl[(-0.25\times1.2)-(-0.5\times(-0.2))\bigr]+0=4.8

∴ The response,

\textstyle\mathrm{V}_{x}\,=\,\mathrm{V}_{2}\,=\,{\frac{\Delta^{\prime}_2}{\Delta^{\prime}}} ={\frac{4.8}{0.8575}}\,=\,5.0131V

Case ii : To prove the reciprocity theorem by interchanging the positions of source and response

Let us interchange the positions of source and response as shown in Fig. 3. Let us assume node voltages as shown in Fig. 3. Now the response, V_x = V_a. With reference to Fig. 3, the node basis matrix equation is,

\begin{bmatrix} {{\frac{1}{4}+\frac{1}{10}}+\frac{1}{2} }&{{-\frac{1}{4}}}&-\frac{1}{2}\\ -\frac{1}{4}&{\frac{1}{4}+\frac{1}{1}}+\frac{1}{5} &-\frac{1}{5} \\ -\frac{1}{2}&-\frac{1}{5}&\frac{1}{5}+\frac{1}{2}+\frac{1}{2} \end{bmatrix} \begin{bmatrix} V _{a} \\ V _{b} \\V _{c} \end{bmatrix} =\begin{bmatrix} 0 \\ 12\\0 \end{bmatrix}             ………………(2)

On comparing equations (1) and (2), we can say that the ∆^{\prime} remains the same

{\Delta}^{\prime}=0.9575

\Delta ^{\prime}_a=\begin{vmatrix} {0}&-0.25&-0.5\\ 12 &1.45&-0.2\\ 0&-0.2&1.2 \end{vmatrix} =0-(-0.25)\times[12\times1.2-0]+(-0.5)\times[12\times(-0.2)-0]=3.6+1.2\;=\;4.8

∴ The response,\textstyle\mathrm{V}_{x}\,=\,\mathrm{V}_{a}\,=\,{\frac{\Delta^{\prime}_a}{\Delta^{\prime}}} ={\frac{4.8}{0.9575}}\,=\,5.0131V

Here, the response {V}_{x} remains the same after interchanging the positions of source and response. Hence, the reciprocity theorem is proved.

2
3

Related Answered Questions

Question: 2.65

Verified Answer:

The given circuit can be redrawn as shown in Fig. ...
Question: 2.66

Verified Answer:

In the given circuit the parallel branches with 8 ...
Question: 2.Q.50

Verified Answer:

The circuit can be redrawn as shown in Fig. Q2.50....
Question: 2.Q.49

Verified Answer:

The circuit can be redrawn as shown in Fig. Q2.49....
Question: 2.Q.48

Verified Answer:

\overline{{{Z}}}_{\mathrm{eq}}=\left(\frac{...