Question 3.30: In the circuit of Fig. 1, the switch remains in position-1 f......

In the circuit of Fig. 1, the switch remains in position-1 for a long time. At t = 0, the switch is closed to position-2. Determine the current response.

1
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Case i : Switch in position-1
In position-1, the circuit should have attained steady state because the switch is closed for a long time. The steady state condition of the given circuit with switch in position-1 is shown in Fig. 2. Here a steady current of I0I_0 flows through the inductance. With reference to Fig. 2, we can write,

I0=102=5A I _0=\frac{10}{2}=5 A

This current I0I_0 will be the initial current when the switch is changed from position-1 to position-2.

Case ii : Switch in position-2
Let, i (t) be the current through the circuit when the switch is closed to position-2.

Let, I(s)=L {i(t)} I ( s )= \mathcal{L}  \{i( t )\}

The time domain and s-domain circuits with switch in position-2 are shown in Figs 3 and 4, respectively.

With reference to Fig. 4, we can write,

I(s)=22+0.4s+10.1s=22×0.1s+0.4s×0.1s+10.1s=2×0.1s0.2s+0.04s2+1=0.2s0.04(s2+0.20.04s+10.04)=5ss2+5s+25 I(s)=\frac{2}{2+0.4 s+\frac{1}{0.1 s}} \\=\frac{2}{\frac{2 \times 0.1 s+0.4 s \times 0.1 s+1}{0.1 s}}=\frac{2 \times 0.1 s }{0.2 s +0.04 s ^2+1} \\ =\frac{0.2 s }{0.04\left( s ^2+\frac{0.2}{0.04} s +\frac{1}{0.04}\right)}=\frac{5 s }{ s ^2+5 s +25}

The roots of the quadratic, s² + 5s + 25 = 0 are,

s=5±524×252=5±752=5±1752=2.5±j4.3301 s=\frac{-5 \pm \sqrt{5^2-4 \times 25}}{2}=\frac{-5 \pm \sqrt{-75}}{2} \\ =\frac{-5 \pm \sqrt{-1} \sqrt{75}}{2}=-2.5 \pm j 4.3301

Since the roots are complex conjugate, the response will be damped sinusoid. Let us rearrange the terms of denominator polynomial of I (s).

I(s)=5s(s2+2×2.5s+2.52)+252.52=5s(s+2.5)2+18.75=5s(s+2.5)2+(18.75)2=5(s+2.52.5)(s+2.5)2+4.332=5(s+2.5)(s+2.5)2+4.3322.5×54.33×4.33(s+2.5)2+4.332=5×(s+2.5)(s+2.5)2+4.3322.8868×4.33(s+2.5)2+4.332 I(s)=\frac{5 s}{\left(s^2+2 \times 2.5 s+2.5^2\right)+25-2.5^2}=\frac{5 s}{(s+2.5)^2+18.75} \\ =\frac{5 s }{(s+2.5)^2+(\sqrt{18.75})^2}=\frac{5(s+2.5-2.5)}{(s+2.5)^2+4.33^2} \\ =\frac{5(s+2.5)}{(s+2.5)^2+4.33^2}-\frac{2.5 \times 5}{4.33} \times \frac{4.33}{(s+2.5)^2+4.33^2} \\ =5 \times \frac{(s+2.5)}{(s+2.5)^2+4.33^2}-2.8868 \times \frac{4.33}{(s+2.5)^2+4.33^2}

 

 Add and subtract 2.52 \text { Add and subtract } 2.5^2

 

(a+b)2=a2+2ab+b2 (a+b)^2=a^2+2 a b+b^2

Let us take the inverse Laplace transform of I (s).

L1{I(s)}=5×L1{(s+2.5)(s+2.5)2+4.332}2.8868×L1{4.33(s+2.5)2+4.332}i(t)=5e2.5tcos4.33t2.8868e2.5tsin4.33t=e2.5t[cos4.33t×5sin4.33t×2.8868] \mathcal{L} ^{-1}\{ I ( s )\}=5 \times \mathcal{L} ^{-1}\left\{\frac{( s +2.5)}{( s +2.5)^2+4.33^2}\right\}-2.8868 \times L ^{-1}\left\{\frac{4.33}{( s +2.5)^2+4.33^2}\right\} \\ \therefore \quad i( t )=5 e ^{-2.5 t } \cos 4.33 t -2.8868 e ^{-2.5 t } \sin 4.33 t \\\quad= e ^{-2.5 t }[\cos 4.33 t \times 5-\sin 4.33 t \times 2.8868]           ……..(1)

Let us construct a right-angled triangle with 5 and 2.8868 as two sides as shown in Fig. 5. With reference to Fig. 5, we can write,

tanϕ=2.88685=0.5774ϕ=tan10.5774=30\tan \phi=\frac{2.8868}{5}=0.5774 \\ \therefore \phi=\tan ^{-1} 0.5774=30^{\circ}
Also,cosϕ=55.77355=5.7735cosϕ5=5.7735cos30   ..(2)sinϕ=2.88685.77352.8868=5.7735sinϕ2.8868=5.7735sin30 \cos \phi=\frac{5}{5.7735} \quad \Rightarrow \quad 5=5.7735 \cos \phi \\ \therefore \quad 5=5.7735 \cos 30^{\circ}      …..(2) \\ \sin \phi=\frac{2.8868}{5.7735} \Rightarrow 2.8868=5.7735 \sin \phi \\ \therefore 2.8868=5.7735 \sin 30^{\circ}            …..(3)
Using equations (2) and (3), equation (1) can be written as,

i(t) =e2.5t[cos4.33t×5.7735cos30sin4.33t×5.7735sin30]=5.7735e2.5t[cos4.33tcos30sin4.33tsin30]i( t )  = e ^{-2.5 t }\left[\cos 4.33 t \times 5.7735 \cos 30^{\circ}-\sin 4.33 t \times 5.7735 \sin 30^{\circ}\right] \\ =5.7735 e ^{-2.5 t }\left[\cos 4.33 t \cos 30^{\circ}-\sin 4.33 t \sin 30^{\circ}\right]=5.7735e2.5tcos(4.33t+30)=5.7735e2.5tsin(4.33t+30+90)=5.7735e2.5tsin(4.33t+120)A =5.7735 e ^{-2.5 t } \cos \left(4.33 t +30^{\circ}\right) \\ =5.7735 e ^{-2.5 t } \sin \left(4.33 t +30^{\circ}+90^{\circ}\right) \\ =5.7735 e ^{-2.5 t } \sin \left(4.33 t +120^{\circ}\right) A

cos(A+B)=cosAcosBsinAsinB \cos (A+B)=\cos A \cos B-\sin A \sin B

cosθ=sin(θ+90) \cos \theta=\sin \left(\theta+90^{\circ}\right)

2
3.4
5

Related Answered Questions