Question 6.4: In the modeling of a certain structure, the natural frequenc......

In the modeling of a certain structure, the natural frequencies of the first three normal modes, as calculated, and then verified by tests, were
f_{1}  =  10.1  Hz,    f_{2}  =  17.8  Hz      \mathrm{and}      f_{3}  =   25.3  Hz
The measured non-dimensional viscous damping coefficients of these modes, expressed as a fraction of critical damping were
\gamma _{1}  =  0.018,  \gamma _{2}  =  0.027,      \mathrm{and}      \gamma _{3}  =  0.035
respectively. If the modal vectors were scaled to make them orthonormal (so that the mass matrix is a unit matrix), write down the equations of motion.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

It is assumed that the system, in normal mode coordinates, can be treated as three uncoupled, single-DOF, equations as follows:

\underline{m}_{ii} \ddot{q}_{i} + \underline{c}_{ii} \dot{q}_{i} + \underline{k}_{ii} q_{i} = Q_{i}    (i = 1, 2, 3)                      (A)

where

\underline{m}_{ii} = 1.                     (B)

Using Eq. (2.16) and Eqs (2.18–2.19):

\omega_{n} = \sqrt{\frac{k}{m}}                         (2.16) \\ c_{c} = 2m\omega_{n}                       (2.18) \\ \gamma = \frac{c}{c_{c}}                         (2.19) \\ \underline{k}_{ii} = \underline{m}_{ii} \omega_{i}^{2} = \underline{m}_{ii} (2\pi f_{i})^{2} = (2\pi f_{i})^{2}                       (C)\\ c_{ii} = 2\gamma_{ii}\underline{m}_{ii} \omega_{i} = 4\pi \gamma_{ii} f_{i}         (i=1,2,3)                       (D)

where ω_{i} is the (undamped) natural frequency of mode i in rad/s, and f_{i} the corresponding natural frequency in Hz.

Table 6.1 gives the numerical values.

The equations of motion are therefore:

\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{Bmatrix} \ddot{q}_{1} \\ \ddot{q}_{2} \\ \ddot{q}_{3} \end{Bmatrix} + \begin{bmatrix} 2.28 & 0 & 0 \\ 0 & 6.04 & 0 \\ 0 & 0 & 11.13 \end{bmatrix} \begin{Bmatrix} \dot{q}_{1} \\ \dot{q}_{2} \\ \dot{q}_{3} \end{Bmatrix} + \begin{bmatrix} 4027 & 0 & 0 \\ 0 & 12508 & 0 \\ 0 & 0 & 25269 \end{bmatrix} \begin{Bmatrix} q_{1} \\ q_{2} \\ q_{3} \end{Bmatrix} = \begin{Bmatrix} Q_{1} \\ Q_{2} \\ Q_{3} \end{Bmatrix}                      (E)

Table 6.1 Calculation of Stiffness and Damping Terms from Measured Data
Mode number i Mode frequency f_{i}(Hz) Generalized mass \underline{m}_{ii} Damping (% Critical) Damping coefficient (Fraction of critical) \gamma_{ii} Stiffness term \underline{k}_{ii} Damping term \underline{c}_{ii}
1 10.1 1 1.8 0.018 4027 2.28
2 17.8 1 2.7 0.027 12 508 6.04
3 25.3 1 3.5 0.035 25 269 11.13

Related Answered Questions