In the RLC circuit of Fig. 1, the inductor has an initial current of 10 A, when the switch is closed at t = 0. Find an expression for the current i (t).
Let, \mathcal{L}\{i(t)\}=I(\mathbf{s})
Also,\mathcal{L}\{200\} =\frac{200}{s}
The s-domain equivalent of the given RLC circuit is shown in Fig. 2.With reference to Fig. 2, we can write
10.08 I(s)+0.2 s I(s)+\frac{1}{0.25 s} I(s)=\frac{200}{s}+2\\ I ( s )\left[10.08+0.2 s +\frac{1}{0.25 s }\right]=\frac{200+2 s }{ s }\\ \therefore I ( s )=\frac{200+2 s }{ s } \times \frac{1}{10.08+0.2 s +\frac{1}{0.25 s }} =\frac{200+2 s }{10.08 s +0.2 s ^2+\frac{1}{0.25}}=\frac{200+2 s }{0.2\left( s ^2+\frac{10.08}{0.2} s +\frac{1}{0.2 \times 0.25}\right)}=\frac{1000+10 s }{ s ^2+50.4 s +20}The roots of quadratic, s² + 50 .4s + 20 = 0 are,
s=\frac{-50.4 \pm \sqrt{50.4^2-4 \times 20}}{2} \\ =\frac{-50.4 \pm 49.6}{2}=-0.4,-50 \\ \therefore I(s) =\frac{1000+10 s}{(s+0.4)(s+50)}I ( s )=\frac{1000+10 s }{( s +0.4)( s +50)}=\frac{ K _1}{ s +0.4}+\frac{ K _2}{ s +50} \\ K _1=\frac{1000+10 s }{( s +0.4)( s +50)} \times\left.( s +0.4)\right|_{ s =-0.4} \\ \quad=\left.\frac{1000+10 s }{ s +50}\right|_{ s =-0.4}=\frac{1000+10 \times(-0.4)}{-0.4+50}=20.0806 \approx 20 \\ K _2=\frac{1000+10 s }{( s +0.4)( s +50)} \times\left.( s +50)\right|_{ s =-50} \\ \quad=\left.\frac{1000+10 s }{ s +0.4}\right|_{ s =-50}=\frac{1000+10 \times(-50)}{-50+0.4}=-10.0806 \approx-10 \\ \therefore I( s )=\frac{20}{ s +0.4}-\frac{10}{ s +50}
Let us take the inverse Laplace transform of I (s).
\mathcal{L}^{-1}\{ I ( s )\} = L ^{-1}\left\{\frac{20}{ s +0.4}-\frac{10}{ s +50}\right\} \\ \therefore i( t ) =20 e ^{-0.4 t }-10 e ^{-50 t } A \\ =10\left(\frac{20}{10} e ^{-0.4 t }- e ^{-50 t }\right) A \\ =10\left(2 e ^{-0.4 t }- e ^{-50 t }\right) A\mathcal{L} \left\{ e ^{- at }\right\}=\frac{1}{ s + a }