Question 6.4: In the sudden enlargement shown below in Figure 6.10, the pr......

In the sudden enlargement shown below in Figure 6.10, the pressure acting at section (1) is considered uniform with value P1P_{1}. Find the change in internal energy between stations (1) and (2) for steady, incompressible flow. Neglect shear stress at the walls and express u2u1u_{2} – u_{1} in terms of v1v_{1}, A1A_{1}, and A2A_{2}. The control volume selected is indicated by the dotted line.

Figure 6.10
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Conservation of Mass

c.s. ⁣ρ(vn)dA+t ⁣ ⁣ ⁣ ⁣c.v. ⁣ρdV=0\iint_{{\bf c.s.}}\!\rho({\bf v}\cdot{\bf n})\,d A+\frac{\partial}{\partial t}\int\!\!\int\!\!\int_{{\bf c.v.}}\!\rho\,d V=0

If we select station (2), a considerable distance downstream from the sudden enlargement, the continuity expression, for steady, incompressible flow, becomes

ρ1v1A1=ρ2v2A2\rho_{1}v_{1}A_{1}=\rho_{2}v_{2}A_{2}

or

v2=v1A1A2v_{2}=v_{1}{\frac{A_{1}}{A_{2}}}   (6-12)

Momentum

ΣF=c.s.ρv(vn)dA+tc.v.ρvdV\Sigma F=\iiint_{\mathrm{c.s.}}\rho\mathbf{v}(\mathbf{v}\cdot\mathbf{n})\,d A+{\frac{\partial}{\partial t}}\iiint_{\mathrm{c.v.}}\rho\mathbf{v}\,d{{V}}

and thus

P1A2P2A2=ρv22A2ρv12A1P_{1}A_{2}-P_{2}A_{2}=\rho v_{2}^{2}A_{2}-\rho v_{1}^{2}A_{1}

or

P1P2ρ=v22v12(A1A2){\frac{P_{1}-P_{2}}{\rho}}=v_{2}^{2}-v_{1}^{2}\biggl({\frac{A_{1}}{A_{2}}}\biggr)    (6-13)

Energy

δQtδWsdt=c.s. ⁣ρ(e+Pρ)(vn)dA+tc.v. ⁣ρedV+δWμdt{\frac{\delta Q}{\partial t}}-{\frac{\delta W_{\mathrm{{s}}}}{d t}}=\iint_{\mathrm{c.s.}}\!\rho\left(e+{\frac{P}{\rho}}\right)(\mathbf{v}\cdot\mathbf{n})\,d A+{\frac{\partial}{\partial t}}\iiint_{\mathrm{c.v.}}\!\rho\,e\,d V+{\frac{\delta W_{\mu}}{d t}}

Thus,

(e1+P1ρ)(ρv1A1)=(e2+P2ρ)(ρv2A2)\left(e_{1}+{\frac{P_{1}}{\rho}}\right)(\rho v_{1}A_{1})=\left(e_{2}+{\frac{P_{2}}{\rho}}\right)(\rho v_{2}A_{2})

or, since ρv1A1=ρv2A2,\rho v_{1}A_{1}=\rho v_{2}A_{2},

e1+P1ρ=e2+P2ρe_{1}+{\frac{P_{1}}{\rho}}=e_{2}+{\frac{P_{2}}{\rho}}

The specific energy is

e=v22+gy+ue={\frac{v^{2}}{2}}+g y+u

Thus, our energy expression becomes

v122+gy1+u1+P1ρ=v222+gy2+u2+P2ρ{\frac{v_{1}^{2}}{2}}+g y_{1}+u_{1}+{\frac{P_{1}}{\rho}}={\frac{v_{2}^{2}}{2}}+g y_{2}+u_{2}+{\frac{P_{2}}{\rho}}  (6-14)

The three control-volume expressions may now be combined to evaluate u2u1u_{2} – u_{1}. From equation (6-14), we have

u2u1=P1P2ρ+v12v222+g(y1y2)u_{2}-u_{1}={\frac{P_{1}-P_{2}}{\rho}}+{\frac{v_{1}^{2}-v_{2}^{2}}{2}}+g(y_{1}-y_{2})   (6-14a)

Substituting equation (6-13) for (P1P2)/ρ(P_1 – P_2)/ρ and equation (6-12) for v2v_{2} and noting that y1=y2y_{1} = y_{2}, we obtain

u2u1=v12(A1A2)2v12A1A2+v122v122(A1A2)2u_{2}-u_{1}=v_{1}^{2}\biggl(\frac{A_{1}}{A_{2}}\biggr)^{2}-v_{1}^{2}\frac{A_{1}}{A_{2}}+\frac{v_{1}^{2}}{2}-\frac{v_{1}^{2}}{2}\biggl(\frac{A_{1}}{A_{2}}\biggr)^{2}

=v122[12A1A2+(A1A2)2]=v122[1A1A2]2={\frac{v_{1}^{2}}{2}}\left[1-2{\frac{A_{1}}{A_{2}}}+\left({\frac{A_{1}}{A_{2}}}\right)^{2}\right]={\frac{v_{1}^{2}}{2}}\left[1-{\frac{A_{1}}{A_{2}}}\right]^{2}         (16-5)

Equation (6-15) shows that the internal energy increases in a sudden enlargement. The temperature change corresponding to this change in internal energy is insignificant, but from equation (6-14a) it can be seen that the change in total head,

(P1ρ+v122+gy1)(P2ρ+v222+gy2)\left(\frac{P_{1}}{\rho}+\frac{v_{1}^{2}}{2}+g y_{1}\right)-\left(\frac{P_{2}}{\rho}+\frac{v_{2}^{2}}{2}+g y_{2}\right)

is equal to the internal energy change. Accordingly, the internal energy change in an incompressible flow is designated as the head loss, hLh_{L}, and the energy equation for steady, adiabatic, incompressible flow in a stream tube is written as

P1ρg+v122g+y1=hL+P2ρg+v222g+y2{\frac{P_{1}}{\rho g}}+{\frac{v_{1}^{2}}{2g}}+y_{1}=h_{L}+{\frac{P_{2}}{\rho g}}+{\frac{v_{2}^{2}}{2g}}+y_{2}    (6-16)

Note the similarity to equation (6–11).

gy1+v122+P1ρ=gy2+v222+P2ρg y_{1}+{\frac{v_{1}^{2}}{2}}+{\frac{P_{1}}{\rho}}=g y_{2}+{\frac{v_{2}^{2}}{2}}+{\frac{P_{2}}{\rho}}   (6-11a)

y1+v122g+P1ρg=y2+v222g+P2ρgy_{1}+{\frac{v_{1}^{2}}{2g}}+{\frac{P_{1}}{\rho g}}=y_{2}+{\frac{v_{2}^{2}}{2g}}+{\frac{P_{2}}{\rho g}}   (6-11b)

Related Answered Questions