Question 24.6: It is desired to separate a mixture of two industrial enzyme......

It is desired to separate a mixture of two industrial enzymes, lysozyme and catalase, in a dilute, aqueous solution by a gel filtration membrane. A mesoporous membrane with cylindrical pores of 30 nm diameter is available (Figure 24.9). The following separation factor (α) for the process is proposed:

\alpha={\frac{D_{A e}}{D_{B e}}}

Determine the separation factor for this process. The properties of each enzyme as reported by \mathrm{Tanford}^{21} are given below.

\begin{array}{lccc}\\  \text{Lysozyme (species A) } & \text{Catalase (species B)} \\ M_{A}=14,100\;\mathrm{g/gmole} & M_{B}=250.000\,\mathrm{g/gmole} \\ d_{s A}=4.12\,\mathrm{nm} & d_{s.B}=10.44\,{\mathrm{nm}} \\ D_{A-\mathrm{H}_{2}O}^{o}=1.04\times10^{-6}\,\mathrm{cm}^{2}/\mathrm{s} & D_{B-\mathrm{H}_{2}O}^{o}=4.10\times10^{-7}\,\mathrm{cm}^{2}/\mathrm{s}\\  \end{array}
Figure 24.9
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The transport of large enzyme molecules through pores filled with liquid water represents a hindered diffusion process. The reduced pore diameters for lysozyme and catalase are

\varphi_{A}={\frac{d_{s, A}}{d_{\mathrm{pore}}}}={\frac{4.12\,\mathrm{nm}}{30.0\,\mathrm{nm}}}=0.137\,\mathrm{and}\,\varphi_{B}={\frac{d_{s, B}}{d_{\mathrm{pore}}}}={\frac{10.44\,\mathrm{nm}}{30.0\,\mathrm{nm}}}=0.348

For lysozyme, F_{1}(\varphi_{A}), by equation (24-64), and F_{2}(\varphi_{A}), by the Renkin equation (24-65), are

F_{2}(\varphi)=1-2.104\varphi+2.09\varphi^{3}-0.95\varphi^{5}          (24-65)

F_{1}(\varphi_{A})=(1-\varphi_{A})^{2}=(1-0.137)^{2}=0.744\\

F_{2}(\varphi_{A})\,=\,1-2.104\varphi_{A}+2.09\varphi_{A}^{3}-0.95\varphi_{A}^{5}\\

=\;1-2.104(0.137)+2.090(0.137)^{3}-0.95(0.137)^{5}=0.716

The effective diffusivity of lysozyme in the pore, D_{Ae} , is estimated by equation (24-62)

\frac{D_{A e}}{D_{A B}^{o}}=F_{1}(\varphi)F_{2}(\varphi)        (24-62)

D_{A e}=D_{A-\mathrm{H}_{2}O}F_{1}(\varphi_{A})F_{2}(\varphi_{A})=1.04\times10^{-6}\frac{\mathrm{cm}^{2}}{\mathrm{s}}(0.744)(0.716)=5.54\times10^{-7}\frac{\mathrm{cm}^{2}}{\mathrm{s}}

Likewise, for catalase F_{1}(\varphi_{B})=0.425,F_{2}(\varphi_{B})=0.351,\;\mathrm{and}\;D_{B e}=6.12\times10^{-8}\;\mathrm{cm}^{2}/s. Finally, the separation factor is

\alpha={\frac{D_{A e}}{D_{B e}}}={\frac{5.54\times10^{-7}\,\mathrm{cm}^{2}/s}{6.12\times10^{-8}\,\mathrm{cm}^{2}/s}}=9.06

It is interesting to compare the value above with \alpha^{\prime}, the ratio of molecular diffusivities at infinite dilution:

\alpha^{\prime}={\frac{D_{A-H_{2}O}}{D_{B-\mathrm{HzO}}}}={\frac{1.04\times10^{-6}\mathrm{cm}^{2}/{\mathrm{s}}}{4.1\times10^{-7}\mathrm{cm}^{2}/{\mathrm{s}}}}=1.75

The small pore diameter enhances the value for \alpha, because the diffusion of the large catalase molecule is significantly hindered inside the pore relative to the smaller lysozyme molecule.

Related Answered Questions