Question 7.5: Jed Home Stores Credit Card Purchases Study Jed Home Stores ......

Jed Home Stores Credit Card Purchases Study

Jed Home Stores analysed the value of purchases made on credit card by a random sample of 25 of their credit card customers. The sample mean was found to be R170, with a sample standard deviation of R22. Assume credit card purchase values are normally distributed.

(a) Estimate, with 95% confidence, the actual mean value of credit card purchases by all their credit card customers.

(b) Assume that 46 credit card purchases were sampled. Set 95% confidence limits for the actual mean value of credit card purchases at this home store (σ is unknown).

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) Given \bar{x}= R170, s = R22 and n = 25 credit card customers.

The standard error of \bar{x} is estimated by \sigma_{\bar{x}}\approx \frac{s}{\sqrt{n} }=\frac{22}{\sqrt{25} } = R4.40

Since σ is unknown, the t-distribution must be used to find the t-limits for the 95% confidence level. From the t-table (Table 2, Appendix 1) the t-value associated with α = 0.025 and df = n − 1 = 25 − 1 = 24 is 2.064.

The estimated margin of error is 2.064 × 4.4 = R9.08.

Lower limit: 170 – 2.064(4.4) = 170 – 9.08 = 160.92

Upper limit: 170 + 2.064(4.4) = 170 + 9.08 = 179.08

The 95% confidence interval estimate for μ is given by R160.92 ≤ μ ≤ R179.08.

Management Interpretation

There is a 95% chance that the actual mean value of all credit card purchases at Jed Home Stores lies between R160.92 and R179.08.

(b) The increase in sample size to n = 46 will change the values of both the t-value and the estimated standard error of \bar{x}.

The t-limit is now 2.014, since α = 0.025 and df = n − 1 = 45, and the estimated standard error of \bar{x} is:

\sigma_{\bar{x}}\approx \frac{s}{\sqrt{n} }=\frac{22}{\sqrt{46} } = R3.24

The estimated margin of error is 2.014 × 3.24 = R6.53.

Lower limit: 170 – 2.014(3.24) = 170 – 6.53 = 163.47

Upper limit: 170 + 2.014(3.24) = 170 + 6.53 = 176.53

Thus the 95% confidence interval estimate for μ is given by R163.47 ≤ μ ≤ R176.53.

Management Interpretation

There is a 95% chance that the actual mean value of all credit card purchases at Jed Home Stores lies between R163.47 and R176.53.

TABLE 2 The t distribution This table gives the value of t_{(\alpha,n)} with n degrees of freedom = P[t\geq t_{(\alpha,n)}] In Excel (2016) use:
T.INV(α, df) for a one-sided lower limit
T.INV(1 – α, df) for a one-sided upper limit
T.INV.2T(α, df) for two-sided limits where α = combined tail areas
α 0.100 0.050 0.025 0.010 0.005 0.0025
df
1 3.078 6.314 12.706 31.821 63.657 127.322
2 1.886 2.920 4.303 6.965 9.925 14.089
3 1.638 2.353 3.182 4.541 5.841 7.453
4 1.533 2.132 2.776 3.747 4.604 5.598
5 1.476 2.015 2.571 3.365 4.032 4.773
6 1.440 1.943 2.447 3.143 3.707 4.317
7 1.415 1.895 2.365 2.998 3.499 4.029
8 1.397 1.860 2.306 2.896 3.355 3.833
9 1.383 1.833 2.262 2.821 3.250 3.690
10 1.372 1.812 2.228 2.764 3.169 3.581
11 1.363 1.796 2.201 2.718 3.106 3.497
12 1.356 1.782 2.179 2.681 3.055 3.428
13 1.350 1.771 2.160 2.650 3.012 3.372
14 1.345 1.761 2.145 2.624 2.977 3.326
15 1.341 1.753 2.131 2.602 2.947 3.286
16 1.337 1.746 2.120 2.583 2.921 3.252
17 1.333 1.740 2.110 2.567 2.898 3.222
18 1.330 1.734 2.101 2.552 2.878 3.197
19 1.328 1.729 2.093 2.539 2.861 3.174
20 1.325 1.725 2.086 2.528 2.845 3.153
21 1.323 1.721 2.080 2.518 2.831 3.135
22 1.321 1.717 2.074 2.508 2.819 3.119
23 1.319 1.714 2.069 2.500 2.807 3.104
24 1.318 1.711 2.064 2.492 2.797 3.091
25 1.316 1.708 2.060 2.485 2.787 3.078
26 1.315 1.706 2.056 2.479 2.779 3.067
27 1.314 1.703 2.052 2.473 2.771 3.057
28 1.313 1.701 2.048 2.467 2.763 3.047
29 1.311 1.699 2.045 2.462 2.756 3.038
30 1.310 1.697 2.042 2.457 2.750 3.030
31 1.309 1.696 2.040 2.453 2.744 3.022
32 1.309 1.694 2.037 2.449 2.738 3.015
33 1.308 1.692 2.035 2.445 2.733 3.008
34 1.307 1.691 2.032 2.441 2.728 3.002
35 1.306 1.690 2.030 2.438 2.724 2.996
36 1.306 1.688 2.028 2.434 2.719 2.990
37 1.305 1.687 2.026 2.431 2.715 2.985
38 1.304 1.686 2.024 2.429 2.712 2.980
39 1.304 1.685 2.023 2.426 2.708 2.976
40 1.303 1.684 2.021 2.423 2.704 2.971
45 1.301 1.679 2.014 2.412 2.690 2.952
50 1.299 1.676 2.009 2.403 2.678 2.937
60 1.296 1.671 2.000 2.390 2.660 2.915
70 1.294 1.667 1.994 2.381 2.648 2.899
80 1.292 1.664 1.990 2.374 2.639 2.887
90 1.291 1.662 1.987 2.369 2.632 2.878
100 1.290 1.660 1.984 2.364 2.626 2.871
120 1.289 1.658 1.980 2.358 2.617 2.860
140 1.288 1.656 1.977 2.353 2.611 2.852
160 1.287 1.654 1.975 2.350 2.607 2.847
180 1.286 1.653 1.973 2.347 2.603 2.842
200 1.286 1.653 1.972 2.345 2.601 2.839
1.282 1.645 1.960 2.327 2.576 2.807

Related Answered Questions