Question 10.CA.3: Knowing that column AB (Fig. 10.32) has an effective length ......

Knowing that column AB (Fig. 10.32) has an effective length of 14 ft and must safely carry a 32-kip load, design the column using a square glued laminated cross section. The adjusted modulus of elasticity for the wood is E = 800 × 10³ psi, and the adjusted allowable stress for compression parallel to the grain is \sigma_C = 1060 psi.

10.32
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Note that c = 0.90 for glued laminated wood columns. Computing the value of \sigma_{C E} , using Eq. (10.51), gives

\sigma_{C E}=\frac{0.822 E}{(L / d)^2}            (10.51)

=\frac{0.822\left(800 \times 10^3  psi \right)}{(168  in . / d)^2}=23.299 d^2  psi

Equation (10.50) is used to express the column stability factor in terms of d, with \left(\sigma_{C E} / \sigma_C\right)=\left(23.299 d^2 / 1.060 \times 10^3\right)=21.98 \times 10^{-3} d^2

C_P=\frac{1+\left(\sigma_{C E} / \sigma_C\right)}{2 c}-\sqrt{\left[\frac{1+\left(\sigma_{C E} / \sigma_C\right)}{2 c}\right]^2-\frac{\sigma_{C E} / \sigma_C}{c}}              (10.50)

 =\frac{1+21.98 \times 10^{-3} d^2}{2(0.90)}-\sqrt{\left[\frac{\left.1+21.98 \times 10^{-3} d^2\right]^2}{2(0.90)}-\frac{21.98 \times 10^{-3} d^2}{0.90}\right.} 

Since the column must carry 32 kips, Eq. (10.49) gives

\sigma_{\text {all }}=\sigma_C C_P             (10.49)

\sigma_{\text {all }}=\frac{32  kips }{d^2}=\sigma_C C_P=1.060 C_P

Solving this equation for C_P and substituting the value into the previous equation, we obtain

\frac{30.19}{d^2}=\frac{1+21.98 \times 10^{-3} d^2}{2(0.90)}-\sqrt{\left[\frac{1+21.98 \times 10^{-3} d^2}{2(0.90)}\right]^2-\frac{21.98 \times 10^{-3} d^2}{0.90}}

Solving for d by trial and error yields d = 6.45 in.

Related Answered Questions

Question: 10.SP.6

Verified Answer:

MODELING and ANALYSIS: Using Eq. (10.57), ...