Question 12.54: KNOWN: Furnace wall temperature and aperture diameter. Dista......

KNOWN: Furnace wall temperature and aperture diameter. Distance of detector from aperture and orientation of detector relative to aperture.

FIND: (a) Rate at which radiation from the furnace is intercepted by the detector, (b) Effect of aperture window of prescribed spectral transmissivity on the radiation interception rate.

ASSUMPTIONS: (1) Radiation emerging from aperture has characteristics of emission from a blackbody, (2) Cover material is diffuse, (3) Aperture and detector surface may be approximated as infinitesimally small.

SCHEMATIC:

12.54
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

ANALYSIS: (a) From Eq. 12.5, the heat rate leaving the furnace aperture and intercepted by the detector is

q = I _{ e } A _{ a } \cos \theta_{ 1 } \omega_{ s – a }.

From Eqs. 12.14 and 12.28

I _{ e }=\frac{ E _{ b }\left( T _{ f }\right)}{\pi}=\frac{\sigma T _{ f }^4}{\pi}=\frac{5.67 \times 10^{-8}(1500)^4}{\pi}=9.14 \times 10^4  W / m ^2 \cdot sr .

From Eq. 12.2,

\omega_{ s – a }=\frac{ A _{ n }}{ r ^2}=\frac{ A _{ s } \cdot \cos \theta_2}{ r ^2}=\frac{10^{-5}  m ^2 \times \cos 45^{\circ}}{(1  m )^2}=0.707 \times 10^{-5} sr.

Hence

q =9.14 \times 10^4  W / m ^2 \cdot sr \left[\pi(0.02  m )^2 / 4\right] \cos 30^{\circ} \times 0.707 \times 10^{-5}  sr =1.76 \times 10^{-4}  W.

(b) With the window, the heat rate is

q =\tau\left( I _{ e } A _{ a } \cos \theta_1 \omega_{ s – a }\right)

where τ is the transmissivity of the window to radiation emitted by the furnace wall. From Eq. 12.55,

\tau=\frac{\int_0^{\infty} \tau_\lambda G _\lambda d \lambda}{\int_0^{\infty} G _\lambda d \lambda}=\frac{\int_0^{\infty} \tau_\lambda E _{\lambda, b }\left( T _{ f }\right) d \lambda}{\int_0^{\infty} E _{\lambda, b } d \lambda}=0.8 \int_0^2\left( E _{\lambda, b } / E _{ b }\right) d \lambda=0.8 F _{(0 \rightarrow 2  \mu m )}.

With λT = 2 μm × 1500 K = 3000 μm·K, Table 12.1 gives F _{(0 \rightarrow 2  \mu m )}=0.273. Hence, with τ = 0.273 × 0.8 = 0.218, find

q =0.218 \times 1.76 \times 10^{-4}  W =0.384 \times 10^{-4}  W.

Table: 12.1 Blackbody Radiation Functions

\lambda T,(μm.K) F_{0→\lambda} I_{\lambda ,b}(\lambda ,T)/\sigma T^5,(μm.K.sr)^{-1} \frac{I_{\lambda ,b}(\lambda,T)}{I_{\lambda ,b}(\lambda_{max},T)}
200 0 0.375034 ×10^{-27} 0
400 0 0.490335 ×10^{-13} 0
600 0 0.104046 ×10^{-8} 0.000014
800 0.000016 0.991126 ×10^{-7} 0.001372
1,000 0.000321 0.118505 ×10^{-5} 0.016406
1,200 0.002134 0.523927 ×10^{-5} 0.072534
1,400 0.00779 0.134411 ×10^{-4} 0.186082
1,600 0.019718 0.24913 0.344904
1,800 0.039341 0.375568 0.519949
2,000 0.066728 0.493432 0.683123
2,200 0.100888 0.589649 ×10^{-4} 0.816329
2,400 0.140256 0.658866 0.912155
2,600 0.18312 0.701292 0.970891
2,800 0.227897 0.720239 0.997123
2,898 0.250108 0.722318 ×10^{-4} 1
3,000 0.273232 0.720254 ×10^{-4} 0.997143
3,200 0.318102 0.705974 0.977373
3,400 0.361735 0.681544 0.943551
3,600 0.403607 0.650396 0.900429
3,800 0.443382 0.615225 ×10^{-4} 0.851737
4,000 0.480877 0.578064 0.800291
4,200 0.516014 0.540394 0.748139
4,400 0.548796 0.503253 0.69672
4,600 0.57928 0.467343 0.647004
4,800 0.607559 0.433109 0.59961
5,000 0.633747 0.400813 0.554898
5,200 0.65897 0.370580 ×10^{-4} 0.513043
5,400 0.68036 0.342445 0.474092
5,600 0.701046 0.316376 0.438002
5,800 0.720158 0.292301 0.404671
6,000 0.737818 0.270121 0.373965
6,200 0.75414 0.249723 ×10^{-4} 0.345724
6,400 0.769234 0.230985 0.319783
6,600 0.783199 0.213786 0.295973
6,800 0.796129 0.198008 0.274128
7,000 0.808109 0.183534 0.25409
7,200 0.819217 0.170256 ×10^{-4} 0.235708
7,400 0.829527 0.158073 0.218842
7,600 0.839102 0.146891 0.20336
7,800 0.848005 0.136621 0.189143
8,000 0.856288 0.127185 0.176079
8,500 0.874608 0.106772 ×10^{-4} 0.147819
9,000 0.890029 0.901463 × 10^{-5} 0.124801
9,500 0.903085 0.765338 0.105956
10,000 0.914199 0.653279× 10^{-5} 0.090442
10,500 0.92371 0.560522 0.0776
11,000 0.93189 0.483321 0.066913
11,500 0.939959 0.418725 0.05797
12,000 0.945098 0.364394 ×10^{-5} 0.050448
13,000 0.955139 0.279457 0.038689
14,000 0.962898 0.217641 0.030131
15,000 0.969981 0.171866 ×10^{-5} 0.023794
16,000 0.973814 0.137429 0.019026
18,000 0.98086 0.908240 ×10^{-6} 0.012574
20,000 0.985602 0.62331 0.008629
25,000 0.992215 0.276474 0.003828
30,000 0.99534 0.140469 ×10^{-6} 0.001945
40,000 0.997967 0.473891×10^{-7} 0.000656
50,000 0.998953 0.201605 0.000279
75,000 0.999713 0.418597 ×10^{-8} 0.000058
100,000 0.999905 0.135752 0.000019

Related Answered Questions