Question 12.115: KNOWN: Glass sheet, used on greenhouse roof, is subjected to......

KNOWN: Glass sheet, used on greenhouse roof, is subjected to solar flux, \mathrm G_{\mathrm S}, atmospheric emission, \mathrm G_{\text{atm}}, and interior surface emission, \mathrm G_{\mathrm i}, as well as to convection processes.

FIND: (a) Appropriate energy balance for a unit area of the glass, (b) Temperature of the greenhouse ambient air, \mathrm T_{∞,\mathrm i}, for prescribed conditions.

ASSUMPTIONS: (1) Glass is at a uniform temperature, \mathrm T_{\mathrm g}, (2) Steady-state conditions.

PROPERTIES: Glass: τ_λ = 1  \text {for}  λ ≤ 1  μm; τ_λ = 0  \text {and } α_λ = 1 for λ > 1 μm.

SCHEMATIC:

12.115
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

ANALYSIS: (a) Performing an energy balance on the glass sheet with \dot{ E }_{\text {in}}-\dot{ E }_{\text {out}}=0 and considering two convection processes, emission and three absorbed irradiation terms, find

\alpha_{ S } G _{ S }+\alpha_{ atm } G _{ atm }+ h _{ o }\left( T _{\infty, o }- T _{ g }\right)+\alpha_{ i } G _{ i }+ h _{ i }\left( T _{\infty, i }- T _{ g }\right)-2 \varepsilon \sigma T _{ g }^4=0                (1)

where \alpha_S = solar absorptivity for absorption of G _{\lambda, S } \sim E _{\lambda, b }(\lambda, 5800  K )

\alpha_{ atm }=\alpha_{ i }= absorptivity of long wavelength irradiation (λ >> 1 μm) ≈ 1

\varepsilon=\alpha_\lambda for λ >> 1 μm, emissivity for long wavelength emission ≈ 1

(b) For the prescribed conditions, T_{∞,i} can be evaluated from Eq. (1). As noted above, \alpha_{\text {atm }}=\alpha_{ i }=1 and ε = 1. The solar absorptivity of the glass follows from Eq. 12.47 where G _{\lambda, S } \sim E _{\lambda, b } (λ, 5800 K),

\alpha_{ S }=\int_0^{\infty} \alpha_\lambda G_{\lambda, S} d \lambda / G _{ s }=\int_0^{\infty} \alpha_\lambda E _{\lambda, b }(\lambda, 5800  K ) d \lambda / E _{ b }(5800  K )

\alpha_{ S }=\alpha_1 F _{(0 \rightarrow 1  \mu m )}+\alpha_2\left[1- F _{(0 \rightarrow 1  \mu m )}\right]=0 \times 0.720+1.0[1-0.720]=0.28.

Note that from Table 12.1 for λT = 1 μm × 5800 K = 5800 μm·K, F_{(0 – \lambda)} = 0.720. Substituting numerical values into Eq. (1),

0.28 \times 1100  W / m ^2+1 \times 250  W / m ^2+55  W / m ^2 \cdot K (24-27) K +1 \times 440  W / m ^2 + 10  W / m ^2 \cdot K \left( T _{\infty, i }-27\right) K -2 \times 1 \times 5.67 \times 10^{-8}  W / m ^2 \cdot K (27+273)^4 K ^4=0

find that

T _{\infty, i}=35.5^{\circ}C.

Table: 12.1 Blackbody Radiation Functions

\lambda T,(μm.K) F_{0→\lambda} I_{\lambda ,b}(\lambda ,T)/\sigma T^5,(μm.K.sr)^{-1} \frac{I_{\lambda ,b}(\lambda,T)}{I_{\lambda ,b}(\lambda_{max},T)}
200 0 0.375034 ×10^{-27} 0
400 0 0.490335 ×10^{-13} 0
600 0 0.104046 ×10^{-8} 0.000014
800 0.000016 0.991126 ×10^{-7} 0.001372
1,000 0.000321 0.118505 ×10^{-5} 0.016406
1,200 0.002134 0.523927 ×10^{-5} 0.072534
1,400 0.00779 0.134411 ×10^{-4} 0.186082
1,600 0.019718 0.24913 0.344904
1,800 0.039341 0.375568 0.519949
2,000 0.066728 0.493432 0.683123
2,200 0.100888 0.589649 ×10^{-4} 0.816329
2,400 0.140256 0.658866 0.912155
2,600 0.18312 0.701292 0.970891
2,800 0.227897 0.720239 0.997123
2,898 0.250108 0.722318 ×10^{-4} 1
3,000 0.273232 0.720254 ×10^{-4} 0.997143
3,200 0.318102 0.705974 0.977373
3,400 0.361735 0.681544 0.943551
3,600 0.403607 0.650396 0.900429
3,800 0.443382 0.615225 ×10^{-4} 0.851737
4,000 0.480877 0.578064 0.800291
4,200 0.516014 0.540394 0.748139
4,400 0.548796 0.503253 0.69672
4,600 0.57928 0.467343 0.647004
4,800 0.607559 0.433109 0.59961
5,000 0.633747 0.400813 0.554898
5,200 0.65897 0.370580 ×10^{-4} 0.513043
5,400 0.68036 0.342445 0.474092
5,600 0.701046 0.316376 0.438002
5,800 0.720158 0.292301 0.404671
6,000 0.737818 0.270121 0.373965
6,200 0.75414 0.249723 ×10^{-4} 0.345724
6,400 0.769234 0.230985 0.319783
6,600 0.783199 0.213786 0.295973
6,800 0.796129 0.198008 0.274128
7,000 0.808109 0.183534 0.25409
7,200 0.819217 0.170256 ×10^{-4} 0.235708
7,400 0.829527 0.158073 0.218842
7,600 0.839102 0.146891 0.20336
7,800 0.848005 0.136621 0.189143
8,000 0.856288 0.127185 0.176079
8,500 0.874608 0.106772 ×10^{-4} 0.147819
9,000 0.890029 0.901463 × 10^{-5} 0.124801
9,500 0.903085 0.765338 0.105956
10,000 0.914199 0.653279× 10^{-5} 0.090442
10,500 0.92371 0.560522 0.0776
11,000 0.93189 0.483321 0.066913
11,500 0.939959 0.418725 0.05797
12,000 0.945098 0.364394 ×10^{-5} 0.050448
13,000 0.955139 0.279457 0.038689
14,000 0.962898 0.217641 0.030131
15,000 0.969981 0.171866 ×10^{-5} 0.023794
16,000 0.973814 0.137429 0.019026
18,000 0.98086 0.908240 ×10^{-6} 0.012574
20,000 0.985602 0.62331 0.008629
25,000 0.992215 0.276474 0.003828
30,000 0.99534 0.140469 ×10^{-6} 0.001945
40,000 0.997967 0.473891×10^{-7} 0.000656
50,000 0.998953 0.201605 0.000279
75,000 0.999713 0.418597 ×10^{-8} 0.000058
100,000 0.999905 0.135752 0.000019

Related Answered Questions