KNOWN: Glass sheet, used on greenhouse roof, is subjected to solar flux, \mathrm G_{\mathrm S}, atmospheric emission, \mathrm G_{\text{atm}}, and interior surface emission, \mathrm G_{\mathrm i}, as well as to convection processes.
FIND: (a) Appropriate energy balance for a unit area of the glass, (b) Temperature of the greenhouse ambient air, \mathrm T_{∞,\mathrm i}, for prescribed conditions.
ASSUMPTIONS: (1) Glass is at a uniform temperature, \mathrm T_{\mathrm g}, (2) Steady-state conditions.
PROPERTIES: Glass: τ_λ = 1 \text {for} λ ≤ 1 μm; τ_λ = 0 \text {and } α_λ = 1 for λ > 1 μm.
SCHEMATIC:
ANALYSIS: (a) Performing an energy balance on the glass sheet with \dot{ E }_{\text {in}}-\dot{ E }_{\text {out}}=0 and considering two convection processes, emission and three absorbed irradiation terms, find
\alpha_{ S } G _{ S }+\alpha_{ atm } G _{ atm }+ h _{ o }\left( T _{\infty, o }- T _{ g }\right)+\alpha_{ i } G _{ i }+ h _{ i }\left( T _{\infty, i }- T _{ g }\right)-2 \varepsilon \sigma T _{ g }^4=0 (1)
where \alpha_S = solar absorptivity for absorption of G _{\lambda, S } \sim E _{\lambda, b }(\lambda, 5800 K )
\alpha_{ atm }=\alpha_{ i }= absorptivity of long wavelength irradiation (λ >> 1 μm) ≈ 1
\varepsilon=\alpha_\lambda for λ >> 1 μm, emissivity for long wavelength emission ≈ 1
(b) For the prescribed conditions, T_{∞,i} can be evaluated from Eq. (1). As noted above, \alpha_{\text {atm }}=\alpha_{ i }=1 and ε = 1. The solar absorptivity of the glass follows from Eq. 12.47 where G _{\lambda, S } \sim E _{\lambda, b } (λ, 5800 K),
\alpha_{ S }=\int_0^{\infty} \alpha_\lambda G_{\lambda, S} d \lambda / G _{ s }=\int_0^{\infty} \alpha_\lambda E _{\lambda, b }(\lambda, 5800 K ) d \lambda / E _{ b }(5800 K )
\alpha_{ S }=\alpha_1 F _{(0 \rightarrow 1 \mu m )}+\alpha_2\left[1- F _{(0 \rightarrow 1 \mu m )}\right]=0 \times 0.720+1.0[1-0.720]=0.28.
Note that from Table 12.1 for λT = 1 μm × 5800 K = 5800 μm·K, F_{(0 – \lambda)} = 0.720. Substituting numerical values into Eq. (1),
0.28 \times 1100 W / m ^2+1 \times 250 W / m ^2+55 W / m ^2 \cdot K (24-27) K +1 \times 440 W / m ^2 + 10 W / m ^2 \cdot K \left( T _{\infty, i }-27\right) K -2 \times 1 \times 5.67 \times 10^{-8} W / m ^2 \cdot K (27+273)^4 K ^4=0
find that
T _{\infty, i}=35.5^{\circ}C.
Table: 12.1 Blackbody Radiation Functions
\lambda T,(μm.K) | F_{0→\lambda} | I_{\lambda ,b}(\lambda ,T)/\sigma T^5,(μm.K.sr)^{-1} | \frac{I_{\lambda ,b}(\lambda,T)}{I_{\lambda ,b}(\lambda_{max},T)} |
200 | 0 | 0.375034 ×10^{-27} | 0 |
400 | 0 | 0.490335 ×10^{-13} | 0 |
600 | 0 | 0.104046 ×10^{-8} | 0.000014 |
800 | 0.000016 | 0.991126 ×10^{-7} | 0.001372 |
1,000 | 0.000321 | 0.118505 ×10^{-5} | 0.016406 |
1,200 | 0.002134 | 0.523927 ×10^{-5} | 0.072534 |
1,400 | 0.00779 | 0.134411 ×10^{-4} | 0.186082 |
1,600 | 0.019718 | 0.24913 | 0.344904 |
1,800 | 0.039341 | 0.375568 | 0.519949 |
2,000 | 0.066728 | 0.493432 | 0.683123 |
2,200 | 0.100888 | 0.589649 ×10^{-4} | 0.816329 |
2,400 | 0.140256 | 0.658866 | 0.912155 |
2,600 | 0.18312 | 0.701292 | 0.970891 |
2,800 | 0.227897 | 0.720239 | 0.997123 |
2,898 | 0.250108 | 0.722318 ×10^{-4} | 1 |
3,000 | 0.273232 | 0.720254 ×10^{-4} | 0.997143 |
3,200 | 0.318102 | 0.705974 | 0.977373 |
3,400 | 0.361735 | 0.681544 | 0.943551 |
3,600 | 0.403607 | 0.650396 | 0.900429 |
3,800 | 0.443382 | 0.615225 ×10^{-4} | 0.851737 |
4,000 | 0.480877 | 0.578064 | 0.800291 |
4,200 | 0.516014 | 0.540394 | 0.748139 |
4,400 | 0.548796 | 0.503253 | 0.69672 |
4,600 | 0.57928 | 0.467343 | 0.647004 |
4,800 | 0.607559 | 0.433109 | 0.59961 |
5,000 | 0.633747 | 0.400813 | 0.554898 |
5,200 | 0.65897 | 0.370580 ×10^{-4} | 0.513043 |
5,400 | 0.68036 | 0.342445 | 0.474092 |
5,600 | 0.701046 | 0.316376 | 0.438002 |
5,800 | 0.720158 | 0.292301 | 0.404671 |
6,000 | 0.737818 | 0.270121 | 0.373965 |
6,200 | 0.75414 | 0.249723 ×10^{-4} | 0.345724 |
6,400 | 0.769234 | 0.230985 | 0.319783 |
6,600 | 0.783199 | 0.213786 | 0.295973 |
6,800 | 0.796129 | 0.198008 | 0.274128 |
7,000 | 0.808109 | 0.183534 | 0.25409 |
7,200 | 0.819217 | 0.170256 ×10^{-4} | 0.235708 |
7,400 | 0.829527 | 0.158073 | 0.218842 |
7,600 | 0.839102 | 0.146891 | 0.20336 |
7,800 | 0.848005 | 0.136621 | 0.189143 |
8,000 | 0.856288 | 0.127185 | 0.176079 |
8,500 | 0.874608 | 0.106772 ×10^{-4} | 0.147819 |
9,000 | 0.890029 | 0.901463 × 10^{-5} | 0.124801 |
9,500 | 0.903085 | 0.765338 | 0.105956 |
10,000 | 0.914199 | 0.653279× 10^{-5} | 0.090442 |
10,500 | 0.92371 | 0.560522 | 0.0776 |
11,000 | 0.93189 | 0.483321 | 0.066913 |
11,500 | 0.939959 | 0.418725 | 0.05797 |
12,000 | 0.945098 | 0.364394 ×10^{-5} | 0.050448 |
13,000 | 0.955139 | 0.279457 | 0.038689 |
14,000 | 0.962898 | 0.217641 | 0.030131 |
15,000 | 0.969981 | 0.171866 ×10^{-5} | 0.023794 |
16,000 | 0.973814 | 0.137429 | 0.019026 |
18,000 | 0.98086 | 0.908240 ×10^{-6} | 0.012574 |
20,000 | 0.985602 | 0.62331 | 0.008629 |
25,000 | 0.992215 | 0.276474 | 0.003828 |
30,000 | 0.99534 | 0.140469 ×10^{-6} | 0.001945 |
40,000 | 0.997967 | 0.473891×10^{-7} | 0.000656 |
50,000 | 0.998953 | 0.201605 | 0.000279 |
75,000 | 0.999713 | 0.418597 ×10^{-8} | 0.000058 |
100,000 | 0.999905 | 0.135752 | 0.000019 |