Question 12.60: KNOWN: Large furnace with diffuse, opaque walls (Tf, εf) and......

KNOWN: Large furnace with diffuse, opaque walls (Tf,εf)(\mathrm T_{\mathrm f}, ε_{\mathrm f}) and a small diffuse, spectrally selective object (To,τλ,ρλ)(\mathrm T_{\mathrm o}, τ_λ, ρ_λ).

FIND: For points on the furnace wall and the object, find ε, α, E, G and J.

ASSUMPTIONS: (1) Furnace walls are isothermal, diffuse, and gray, (2) Object is isothermal and diffuse.

SCHEMATIC:

12.60
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

ANALYSIS: Consider first the furnace wall (A). Since the wall material is diffuse and gray, it follows that

εA=εf=αA=0.85\varepsilon_{ A }=\varepsilon_{ f }=\alpha_{ A }=0.85.

The emissive power is

EA=εAEb(Tf)=εAσTf=0.85×5.67×108 W/m2K4(3000 K)4=3.904×106 W/m2E _{ A }=\varepsilon_{ A } E _{ b }\left( T _{ f }\right)=\varepsilon_{ A } \sigma T _{ f }=0.85 \times 5.67 \times 10^{-8}  W / m ^2 \cdot K ^4(3000  K )^4=3.904 \times 10^6  W / m ^2.

Since the furnace is an isothermal enclosure, blackbody conditions exist such that

GA=JA=Eb(Tf)=σTf4=5.67×108 W/m2K4(3000 K)4=4.593×106 W/m2G _{ A }= J _{ A }= E _{ b }\left( T _{ f }\right)=\sigma T _{ f }^4=5.67 \times 10^{-8}  W / m ^2 \cdot K ^4(3000  K )^4=4.593 \times 10^6  W / m ^2.

Considering now the semitransparent, diffuse, spectrally selective object at To\mathrm T_{\mathrm o} = 300 K. From the radiation balance requirement, find

αλ=1ρλτλ or α1=10.60.3=0.1 and α2=10.70.0=0.3\alpha_\lambda=1-\rho_\lambda-\tau_\lambda \text { or } \alpha_1=1-0.6-0.3=0.1 \text { and } \alpha_2=1-0.7-0.0=0.3

αB=0αλGλdλ/G=F0λTα1+(1F0λT)α2=0.970×0.1+(10.970)×0.3=0.106\alpha_{ B }=\int_0^{\infty} \alpha_\lambda G _\lambda d \lambda / G = F _{0-\lambda T } \cdot \alpha_1+\left(1- F _{0-\lambda T }\right) \cdot \alpha_2=0.970 \times 0.1+(1-0.970) \times 0.3=0.106

where F0λT\mathrm F_{0 – \lambda T} = 0.970 at λT = 5 μm × 3000 K = 15,000 μm·K since G=Eb(Tf)\mathrm G = \mathrm E_{\mathrm b}(\mathrm T_{\mathrm f}). Since the object is diffuse, ελ=αλε_λ = α_λ, hence

εB=0ελEλ,b(To)dλ/Eb,o=F0λTα1+(1F0λT)α2=0.0138×0.1+(10.0138)×0.3=0.297\varepsilon_{ B }=\int_0^{\infty} \varepsilon_\lambda E _{\lambda, b }\left( T _{ o }\right) d \lambda / E _{ b , o }= F _{0-\lambda T } \alpha_1+\left(1- F _{0-\lambda T }\right) \cdot \alpha_2=0.0138 \times 0.1+(1-0.0138) \times 0.3=0.297

where F0λT\mathrm F_{0 – \lambda T} = 0.0138 at λT = 5 μm × 300 K = 1500 μmK. The emissive power is

EB=εBEb,B(To)=0.297×5.67×108 W/m2K4(300 K)4=136.5 W/m2E _{ B }=\varepsilon_{ B } E _{ b , B }\left( T _{ o }\right)=0.297 \times 5.67 \times 10^{-8}  W / m ^2 \cdot K ^4(300  K )^4=136.5  W / m ^2.

The irradiation is that due to the large furnace for which blackbody conditions exist,

GB=GA=σTf4=4.593×106 W/m2G _{ B }= G _{ A }=\sigma T _{ f }^4=4.593 \times 10^6  W / m ^2.

The radiosity leaving point B is due to emission and reflected irradiation,

JB=EB+ρBGB=136.5 W/m2+0.3×4.593×106 W/m2=1.378×106 W/m2J _{ B }= E _{ B }+\rho_{ B } G _{ B }=136.5  W / m ^2+0.3 \times 4.593 \times 10^6  W / m ^2=1.378 \times 10^6  W / m ^2.

If we include transmitted irradiation, JB=EB+(ρB+τB)GB=EB+(1 – αB)GB=4.106×106\mathrm J_{\mathrm B} = \mathrm E_{\mathrm B} + (ρ_{\mathrm B} + τ_{\mathrm B}) \mathrm G_{\mathrm B} = \mathrm E_{\mathrm B} + (1  –  α_{\mathrm B}) \mathrm G_{\mathrm B} = 4.106 \times 10^6 W/m².
In the first calculation, note how we set ρBρλ(λ<5 μm)ρ_{\mathrm B} ≈ ρ_λ (λ < 5  μ\mathrm m).

Related Answered Questions