KNOWN: Plate temperature and spectral and directional dependence of its absorptivity. Direction and magnitude of solar flux.
FIND: (a) Expression for total absorptivity, (b) Expression for total emissivity, (c) Net radiant flux, (d) Effect of cut-off wavelength associated with directional dependence of the absorptivity.
ASSUMPTIONS: (1) Diffuse component of solar flux is negligible, (2) Spectral distribution of solar radiation may be approximated as that from a blackbody at 5800 K, (3) Properties are independent of azimuthal angle ϕ.
SCHEMATIC:
ANALYSIS: (a) For λ < λ_c \text {and} θ = 45^{\circ}, α_λ = α_1 \cos θ = 0.707 α_1. From Eq. (12.47) the total absorptivity is then
\alpha_{ S }=0.707 \alpha_1\left\{\frac{\int_0^{\lambda_{ c }} E _{\lambda, b }(\lambda, 5800 K ) d \lambda}{ E _{ b }}\right\}+\alpha_2\left\{\frac{\int_{\lambda_{ c }}^{\infty} E _{\lambda, b }(\lambda, 5800 K ) d \lambda}{ E _{ b }}\right\}
\alpha_{ S }=0.707 \alpha_1 F _{\left(0 \rightarrow \lambda_{ c }\right)}+\alpha_2\left[1- F _{\left(0 \rightarrow \lambda_{ c }\right)}\right]
For the prescribed value of \lambda_{ c }, \lambda_{ c } T =11,600 \mu m \cdot K and, from Table 12.1, F _{(0 \rightarrow \lambda c )}=0.941 . Hence,
\alpha_{ S }=0.707 \times 0.93 \times 0.941+0.25(1-0.941)=0.619+0.015=0.634
(b) With \varepsilon_{\lambda, \theta}=\alpha_{\lambda, 0}, Eq (12.36) may be used to obtain \varepsilon_\lambda \text { for } \lambda<\lambda_c \text {. }
\varepsilon_\lambda(\lambda, T )=2 \alpha_1 \int_0^{\pi / 2} \cos ^2 \theta \sin \theta d \theta=-\left.2 \alpha_1 \frac{\cos ^3 \theta}{3}\right|_0 ^{\pi / 2}=\frac{2}{3} \alpha_1
From Eq. (12.38),
\varepsilon=0.667 \alpha_1 \frac{\int_0^{\lambda_{ c }} E _{\lambda, b }\left(\lambda, T _{ p }\right) d \lambda}{ E _{ b }}+\alpha_2 \frac{\int_{\lambda_{ c }}^{\infty} E _{\lambda, b }\left(\lambda, T _{ p }\right) d \lambda}{ E _{ b }}
\varepsilon=0.667 \alpha_1 F _{\left(0 \rightarrow \lambda_{ c }\right)}+\alpha_2\left[1- F _{\left(0-\lambda_{ c }\right)}\right]
For \lambda_{ c }=2 \mu m \text { and } T _{ p }=333 K , \lambda_{ c } T =666 \mu m \cdot K and, from Table 12.1, F _{(0-\lambda c )}=0 . Hence,
\varepsilon=\alpha_2=0.25
(c) q _{\text {net }}^{\prime \prime}=\alpha_{ S } q _{ S }^{\prime \prime}-\varepsilon \sigma T _{ p }^4=634 W / m ^2-0.25 \times 5.67 \times 10^{-8} W / m ^2 \cdot K ^4(333 K )^4
q _{\text {net }}^{\prime \prime}=460 W / m ^2
(d) Using the foregoing model with the Radiation/Band Emission Factor option of IHT, the following results were obtained for α_S~\text{and}~ε. The absorptivity increases with increasing λ_c, as more of the incident solar radiation falls within the region of α_1 > α_2. Note, however, the limit at λ ≈ 3 µm, beyond which there is little change in α_S. The emissivity also increases with increasing λ_c, as more of the emitted radiation is at wavelengths for which ε_1 = α_1 > ε_2 = α_2. However, the surface temperature is low, and even for λ_c = 5 µm, there is little emission at λ < λ_c. Hence, ε only increases from 0.25 to 0.26 as λ_c increases from 0.7 to 5.0 µm.
The net heat flux increases from 276 W/m² at λ_c = 2 µm to a maximum of 477 W/m² at λ_c = 4.2 µm and then decreases to 474 W/m² at λ_c = 5 µm. The existence of a maximum is due to the upper limit on the value of α_S and the increase in ε~\text{with}~λ_c.
COMMENTS: Spectrally and directionally selective coatings may be used to enhance the performance of solar collectors.
Table: 12.1 Blackbody Radiation Functions
\lambda T,(μm.K) | F_{0→\lambda} | I_{\lambda ,b}(\lambda ,T)/\sigma T^5,(μm.K.sr)^{-1} | \frac{I_{\lambda ,b}(\lambda,T)}{I_{\lambda ,b}(\lambda_{max},T)} |
200 | 0 | 0.375034 ×10^{-27} | 0 |
400 | 0 | 0.490335 ×10^{-13} | 0 |
600 | 0 | 0.104046 ×10^{-8} | 0.000014 |
800 | 0.000016 | 0.991126 ×10^{-7} | 0.001372 |
1,000 | 0.000321 | 0.118505 ×10^{-5} | 0.016406 |
1,200 | 0.002134 | 0.523927 ×10^{-5} | 0.072534 |
1,400 | 0.00779 | 0.134411 ×10^{-4} | 0.186082 |
1,600 | 0.019718 | 0.24913 | 0.344904 |
1,800 | 0.039341 | 0.375568 | 0.519949 |
2,000 | 0.066728 | 0.493432 | 0.683123 |
2,200 | 0.100888 | 0.589649 ×10^{-4} | 0.816329 |
2,400 | 0.140256 | 0.658866 | 0.912155 |
2,600 | 0.18312 | 0.701292 | 0.970891 |
2,800 | 0.227897 | 0.720239 | 0.997123 |
2,898 | 0.250108 | 0.722318 ×10^{-4} | 1 |
3,000 | 0.273232 | 0.720254 ×10^{-4} | 0.997143 |
3,200 | 0.318102 | 0.705974 | 0.977373 |
3,400 | 0.361735 | 0.681544 | 0.943551 |
3,600 | 0.403607 | 0.650396 | 0.900429 |
3,800 | 0.443382 | 0.615225 ×10^{-4} | 0.851737 |
4,000 | 0.480877 | 0.578064 | 0.800291 |
4,200 | 0.516014 | 0.540394 | 0.748139 |
4,400 | 0.548796 | 0.503253 | 0.69672 |
4,600 | 0.57928 | 0.467343 | 0.647004 |
4,800 | 0.607559 | 0.433109 | 0.59961 |
5,000 | 0.633747 | 0.400813 | 0.554898 |
5,200 | 0.65897 | 0.370580 ×10^{-4} | 0.513043 |
5,400 | 0.68036 | 0.342445 | 0.474092 |
5,600 | 0.701046 | 0.316376 | 0.438002 |
5,800 | 0.720158 | 0.292301 | 0.404671 |
6,000 | 0.737818 | 0.270121 | 0.373965 |
6,200 | 0.75414 | 0.249723 ×10^{-4} | 0.345724 |
6,400 | 0.769234 | 0.230985 | 0.319783 |
6,600 | 0.783199 | 0.213786 | 0.295973 |
6,800 | 0.796129 | 0.198008 | 0.274128 |
7,000 | 0.808109 | 0.183534 | 0.25409 |
7,200 | 0.819217 | 0.170256 ×10^{-4} | 0.235708 |
7,400 | 0.829527 | 0.158073 | 0.218842 |
7,600 | 0.839102 | 0.146891 | 0.20336 |
7,800 | 0.848005 | 0.136621 | 0.189143 |
8,000 | 0.856288 | 0.127185 | 0.176079 |
8,500 | 0.874608 | 0.106772 ×10^{-4} | 0.147819 |
9,000 | 0.890029 | 0.901463 × 10^{-5} | 0.124801 |
9,500 | 0.903085 | 0.765338 | 0.105956 |
10,000 | 0.914199 | 0.653279× 10^{-5} | 0.090442 |
10,500 | 0.92371 | 0.560522 | 0.0776 |
11,000 | 0.93189 | 0.483321 | 0.066913 |
11,500 | 0.939959 | 0.418725 | 0.05797 |
12,000 | 0.945098 | 0.364394 ×10^{-5} | 0.050448 |
13,000 | 0.955139 | 0.279457 | 0.038689 |
14,000 | 0.962898 | 0.217641 | 0.030131 |
15,000 | 0.969981 | 0.171866 ×10^{-5} | 0.023794 |
16,000 | 0.973814 | 0.137429 | 0.019026 |
18,000 | 0.98086 | 0.908240 ×10^{-6} | 0.012574 |
20,000 | 0.985602 | 0.62331 | 0.008629 |
25,000 | 0.992215 | 0.276474 | 0.003828 |
30,000 | 0.99534 | 0.140469 ×10^{-6} | 0.001945 |
40,000 | 0.997967 | 0.473891×10^{-7} | 0.000656 |
50,000 | 0.998953 | 0.201605 | 0.000279 |
75,000 | 0.999713 | 0.418597 ×10^{-8} | 0.000058 |
100,000 | 0.999905 | 0.135752 | 0.000019 |