Question 12.111: KNOWN: Plate temperature and spectral and directional depend......

KNOWN: Plate temperature and spectral and directional dependence of its absorptivity. Direction and magnitude of solar flux.

FIND: (a) Expression for total absorptivity, (b) Expression for total emissivity, (c) Net radiant flux, (d) Effect of cut-off wavelength associated with directional dependence of the absorptivity.

ASSUMPTIONS: (1) Diffuse component of solar flux is negligible, (2) Spectral distribution of solar radiation may be approximated as that from a blackbody at 5800 K, (3) Properties are independent of azimuthal angle ϕ.

SCHEMATIC:

12.111
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

ANALYSIS: (a) For λ < λ_c  \text {and}  θ = 45^{\circ}, α_λ = α_1  \cos θ = 0.707 α_1. From Eq. (12.47) the total absorptivity is then

\alpha_{ S }=0.707 \alpha_1\left\{\frac{\int_0^{\lambda_{ c }} E _{\lambda, b }(\lambda, 5800  K ) d \lambda}{ E _{ b }}\right\}+\alpha_2\left\{\frac{\int_{\lambda_{ c }}^{\infty} E _{\lambda, b }(\lambda, 5800  K ) d \lambda}{ E _{ b }}\right\}

\alpha_{ S }=0.707 \alpha_1 F _{\left(0 \rightarrow \lambda_{ c }\right)}+\alpha_2\left[1- F _{\left(0 \rightarrow \lambda_{ c }\right)}\right]

For the prescribed value of \lambda_{ c }, \lambda_{ c } T =11,600  \mu m \cdot K and, from Table 12.1, F _{(0 \rightarrow \lambda c )}=0.941 . Hence,

\alpha_{ S }=0.707 \times 0.93 \times 0.941+0.25(1-0.941)=0.619+0.015=0.634

(b) With \varepsilon_{\lambda, \theta}=\alpha_{\lambda, 0}, Eq (12.36) may be used to obtain \varepsilon_\lambda \text { for } \lambda<\lambda_c \text {. }

\varepsilon_\lambda(\lambda, T )=2 \alpha_1 \int_0^{\pi / 2} \cos ^2 \theta \sin \theta d \theta=-\left.2 \alpha_1 \frac{\cos ^3 \theta}{3}\right|_0 ^{\pi / 2}=\frac{2}{3} \alpha_1

From Eq. (12.38),

\varepsilon=0.667 \alpha_1 \frac{\int_0^{\lambda_{ c }} E _{\lambda, b }\left(\lambda, T _{ p }\right) d \lambda}{ E _{ b }}+\alpha_2 \frac{\int_{\lambda_{ c }}^{\infty} E _{\lambda, b }\left(\lambda, T _{ p }\right) d \lambda}{ E _{ b }}

\varepsilon=0.667 \alpha_1 F _{\left(0 \rightarrow \lambda_{ c }\right)}+\alpha_2\left[1- F _{\left(0-\lambda_{ c }\right)}\right]

For \lambda_{ c }=2  \mu m \text { and } T _{ p }=333  K , \lambda_{ c } T =666  \mu m \cdot K and, from Table 12.1, F _{(0-\lambda c )}=0 . Hence,

\varepsilon=\alpha_2=0.25

(c)      q _{\text {net }}^{\prime \prime}=\alpha_{ S } q _{ S }^{\prime \prime}-\varepsilon \sigma T _{ p }^4=634  W / m ^2-0.25 \times 5.67 \times 10^{-8}  W / m ^2 \cdot K ^4(333  K )^4

q _{\text {net }}^{\prime \prime}=460  W / m ^2

(d) Using the foregoing model with the Radiation/Band Emission Factor option of IHT, the following results were obtained for α_S~\text{and}~ε. The absorptivity increases with increasing λ_c, as more of the incident solar radiation falls within the region of α_1 > α_2. Note, however, the limit at λ ≈ 3 µm, beyond which there is little change in α_S. The emissivity also increases with increasing λ_c, as more of the emitted radiation is at wavelengths for which ε_1 = α_1 > ε_2 = α_2. However, the surface temperature is low, and even for λ_c = 5 µm, there is little emission at λ < λ_c. Hence, ε only increases from 0.25 to 0.26 as λ_c increases from 0.7 to 5.0 µm.

The net heat flux increases from 276 W/m² at λ_c = 2 µm to a maximum of 477 W/m² at λ_c = 4.2 µm and then decreases to 474 W/m² at λ_c = 5 µm. The existence of a maximum is due to the upper limit on the value of α_S and the increase in ε~\text{with}~λ_c.

COMMENTS: Spectrally and directionally selective coatings may be used to enhance the performance of solar collectors.

Table: 12.1 Blackbody Radiation Functions

\lambda T,(μm.K) F_{0→\lambda} I_{\lambda ,b}(\lambda ,T)/\sigma T^5,(μm.K.sr)^{-1} \frac{I_{\lambda ,b}(\lambda,T)}{I_{\lambda ,b}(\lambda_{max},T)}
200 0 0.375034 ×10^{-27} 0
400 0 0.490335 ×10^{-13} 0
600 0 0.104046 ×10^{-8} 0.000014
800 0.000016 0.991126 ×10^{-7} 0.001372
1,000 0.000321 0.118505 ×10^{-5} 0.016406
1,200 0.002134 0.523927 ×10^{-5} 0.072534
1,400 0.00779 0.134411 ×10^{-4} 0.186082
1,600 0.019718 0.24913 0.344904
1,800 0.039341 0.375568 0.519949
2,000 0.066728 0.493432 0.683123
2,200 0.100888 0.589649 ×10^{-4} 0.816329
2,400 0.140256 0.658866 0.912155
2,600 0.18312 0.701292 0.970891
2,800 0.227897 0.720239 0.997123
2,898 0.250108 0.722318 ×10^{-4} 1
3,000 0.273232 0.720254 ×10^{-4} 0.997143
3,200 0.318102 0.705974 0.977373
3,400 0.361735 0.681544 0.943551
3,600 0.403607 0.650396 0.900429
3,800 0.443382 0.615225 ×10^{-4} 0.851737
4,000 0.480877 0.578064 0.800291
4,200 0.516014 0.540394 0.748139
4,400 0.548796 0.503253 0.69672
4,600 0.57928 0.467343 0.647004
4,800 0.607559 0.433109 0.59961
5,000 0.633747 0.400813 0.554898
5,200 0.65897 0.370580 ×10^{-4} 0.513043
5,400 0.68036 0.342445 0.474092
5,600 0.701046 0.316376 0.438002
5,800 0.720158 0.292301 0.404671
6,000 0.737818 0.270121 0.373965
6,200 0.75414 0.249723 ×10^{-4} 0.345724
6,400 0.769234 0.230985 0.319783
6,600 0.783199 0.213786 0.295973
6,800 0.796129 0.198008 0.274128
7,000 0.808109 0.183534 0.25409
7,200 0.819217 0.170256 ×10^{-4} 0.235708
7,400 0.829527 0.158073 0.218842
7,600 0.839102 0.146891 0.20336
7,800 0.848005 0.136621 0.189143
8,000 0.856288 0.127185 0.176079
8,500 0.874608 0.106772 ×10^{-4} 0.147819
9,000 0.890029 0.901463 × 10^{-5} 0.124801
9,500 0.903085 0.765338 0.105956
10,000 0.914199 0.653279× 10^{-5} 0.090442
10,500 0.92371 0.560522 0.0776
11,000 0.93189 0.483321 0.066913
11,500 0.939959 0.418725 0.05797
12,000 0.945098 0.364394 ×10^{-5} 0.050448
13,000 0.955139 0.279457 0.038689
14,000 0.962898 0.217641 0.030131
15,000 0.969981 0.171866 ×10^{-5} 0.023794
16,000 0.973814 0.137429 0.019026
18,000 0.98086 0.908240 ×10^{-6} 0.012574
20,000 0.985602 0.62331 0.008629
25,000 0.992215 0.276474 0.003828
30,000 0.99534 0.140469 ×10^{-6} 0.001945
40,000 0.997967 0.473891×10^{-7} 0.000656
50,000 0.998953 0.201605 0.000279
75,000 0.999713 0.418597 ×10^{-8} 0.000058
100,000 0.999905 0.135752 0.000019
12.111b

Related Answered Questions