Question 12.56: KNOWN: Spectral transmissivity of a plain and tinted glass. ......

KNOWN: Spectral transmissivity of a plain and tinted glass.

FIND: (a) Solar energy transmitted by each glass, (b) Visible radiant energy transmitted by each with solar irradiation.

ASSUMPTIONS: (1) Spectral distribution of solar irradiation is proportional to spectral emissive power of a blackbody at 5800 K.

SCHEMATIC:

12.56
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

ANALYSIS: To compare the energy transmitted by the glasses, it is sufficient to calculate the transmissivity of each glass for the prescribed spectral range when the irradiation distribution is that of the solar spectrum. From Eq. 12.55,

\tau_{ S }=\int_0^{\infty} \tau_\lambda \cdot G _{\lambda, S } d \lambda / \int_0^{\infty} G { }_{\lambda, S } d \lambda=\int_0^{\infty} \tau_\lambda \cdot E _{\lambda, b }(\lambda, 5800  K )  d \lambda / E _{ b } (5800  K ).

Recognizing that \tau_\lambda will be constant for the range \lambda_1 \rightarrow \lambda_2, using Eq. 12.31, find

\tau_{ S }=\tau_\lambda \cdot F _{\left(\lambda_1 \rightarrow \lambda_2\right)}=\tau_\lambda\left[ F _{\left(0 \rightarrow \lambda_2\right)}- F _{\left(0 \rightarrow \lambda_1\right)}\right].

(a) For the two glasses, the solar transmissivity, using Table 12.1 for F, is then

Plain glass:       \lambda_2=2.5  \mu m \quad \lambda_2 T =2.5  \mu m \times 5800  K =14,500  \mu m \cdot K \quad F _{(0 \rightarrow \lambda 2)}=0.966

                            \lambda_1=0.3  \mu m \quad \lambda_1 T =0.3  \mu m \times 5800  K =1,740  \mu m \cdot K ~~\quad~~ F_{(0 \rightarrow \lambda_1)}=0.033

\tau_{ S }=0.9[0.966  –  0.033]=0.839.

Tinted glass:    \lambda_2=1.5  \mu m \quad \lambda_2 T =1.5  \mu m \times 5800  K =8,700  \mu m \cdot K \quad F _{\left(0 \rightarrow \lambda_2\right)}=0.881

                            \lambda_1=0.5  \mu m \quad \lambda_1 T =0.5  \mu m \times 5800  K =2,900  \mu m \cdot K \quad F _{\left(0 \rightarrow \lambda_1\right)}=0.033

\tau_{ S }=0.9[0.886-0.250]=0.568.

(b) The limits of the visible spectrum are \lambda_1=0.4 \text { and } \lambda_2=0.7  \mu m \text {. } For the tinted glass, \lambda_1=0.5  \mu m rather than 0.4 μm. From Table 12.1,

\lambda_2=0.7  \mu m \quad \lambda_2 T =0.7  \mu m \times 5800  K =4,060  \mu m \cdot K \quad F _{\left(0 \rightarrow \lambda_2\right)}=0.491

\lambda_1=0.5  \mu m \quad \lambda_1 T =0.5  \mu m \times 5800  K =2,900  \mu m \cdot K \quad F _{\left(0 \rightarrow \lambda_1\right)}=0.250

\lambda_1=0.4  \mu m \quad \lambda_1 T =0.4  \mu m \times 5800  K =2,320  \mu m \cdot K \quad F _{\left(0 \rightarrow \lambda_1\right)}=0.125

Plain glass:      \tau_{\text{vis}}=0.9[0.491-0.125]=0.329

Tinted glass:    \tau_{\text{vis}}=0.9[0.491-0.250]=0.217

COMMENTS: For solar energy, the transmissivities are 0.839 for the plain glass vs. 0.568 for the plain and tinted glasses. Within the visible region, \tau_{\text{vis}} is 0.329 vs. 0.217. Tinting reduces solar flux by 32% and visible solar flux by 34%.

Table: 12.1 Blackbody Radiation Functions

\lambda T,(μm.K) F_{0→\lambda} I_{\lambda ,b}(\lambda ,T)/\sigma T^5,(μm.K.sr)^{-1} \frac{I_{\lambda ,b}(\lambda,T)}{I_{\lambda ,b}(\lambda_{max},T)}
200 0 0.375034 ×10^{-27} 0
400 0 0.490335 ×10^{-13} 0
600 0 0.104046 ×10^{-8} 0.000014
800 0.000016 0.991126 ×10^{-7} 0.001372
1,000 0.000321 0.118505 ×10^{-5} 0.016406
1,200 0.002134 0.523927 ×10^{-5} 0.072534
1,400 0.00779 0.134411 ×10^{-4} 0.186082
1,600 0.019718 0.24913 0.344904
1,800 0.039341 0.375568 0.519949
2,000 0.066728 0.493432 0.683123
2,200 0.100888 0.589649 ×10^{-4} 0.816329
2,400 0.140256 0.658866 0.912155
2,600 0.18312 0.701292 0.970891
2,800 0.227897 0.720239 0.997123
2,898 0.250108 0.722318 ×10^{-4} 1
3,000 0.273232 0.720254 ×10^{-4} 0.997143
3,200 0.318102 0.705974 0.977373
3,400 0.361735 0.681544 0.943551
3,600 0.403607 0.650396 0.900429
3,800 0.443382 0.615225 ×10^{-4} 0.851737
4,000 0.480877 0.578064 0.800291
4,200 0.516014 0.540394 0.748139
4,400 0.548796 0.503253 0.69672
4,600 0.57928 0.467343 0.647004
4,800 0.607559 0.433109 0.59961
5,000 0.633747 0.400813 0.554898
5,200 0.65897 0.370580 ×10^{-4} 0.513043
5,400 0.68036 0.342445 0.474092
5,600 0.701046 0.316376 0.438002
5,800 0.720158 0.292301 0.404671
6,000 0.737818 0.270121 0.373965
6,200 0.75414 0.249723 ×10^{-4} 0.345724
6,400 0.769234 0.230985 0.319783
6,600 0.783199 0.213786 0.295973
6,800 0.796129 0.198008 0.274128
7,000 0.808109 0.183534 0.25409
7,200 0.819217 0.170256 ×10^{-4} 0.235708
7,400 0.829527 0.158073 0.218842
7,600 0.839102 0.146891 0.20336
7,800 0.848005 0.136621 0.189143
8,000 0.856288 0.127185 0.176079
8,500 0.874608 0.106772 ×10^{-4} 0.147819
9,000 0.890029 0.901463 × 10^{-5} 0.124801
9,500 0.903085 0.765338 0.105956
10,000 0.914199 0.653279× 10^{-5} 0.090442
10,500 0.92371 0.560522 0.0776
11,000 0.93189 0.483321 0.066913
11,500 0.939959 0.418725 0.05797
12,000 0.945098 0.364394 ×10^{-5} 0.050448
13,000 0.955139 0.279457 0.038689
14,000 0.962898 0.217641 0.030131
15,000 0.969981 0.171866 ×10^{-5} 0.023794
16,000 0.973814 0.137429 0.019026
18,000 0.98086 0.908240 ×10^{-6} 0.012574
20,000 0.985602 0.62331 0.008629
25,000 0.992215 0.276474 0.003828
30,000 0.99534 0.140469 ×10^{-6} 0.001945
40,000 0.997967 0.473891×10^{-7} 0.000656
50,000 0.998953 0.201605 0.000279
75,000 0.999713 0.418597 ×10^{-8} 0.000058
100,000 0.999905 0.135752 0.000019

Related Answered Questions