Question 12.59: KNOWN: Spectrally selective, diffuse surface exposed to sola......

KNOWN: Spectrally selective, diffuse surface exposed to solar irradiation.

FIND: (a) Spectral transmissivity, \tau_\lambda, (b) Transmissivity, \tau_S, reflectivity, \rho_S, and absorptivity, \alpha_S , for solar irradiation, (c) Emissivity, ε, when surface is at T _{ s } = 350 K, (d) Net heat flux by radiation to the surface.

ASSUMPTIONS: (1) Surface is diffuse, (2) Spectral distribution of solar irradiation is proportional to E _{\lambda, b }(\lambda, 5800  K).

SCHEMATIC:

12.59
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

ANALYSIS: (a) Conservation of radiant energy requires, according to Eq. 12.56, that \rho_\lambda+\alpha_\lambda+\tau_\lambda =1 \text { or } \tau_\lambda=1-\rho_\lambda-\alpha_\lambda. Hence, the spectral transmissivity appears as shown above (dashed line). Note that the surface is opaque for λ > 1.38 μm.

(b) The transmissivity to solar irradiation, G_S, follows from Eq. 12.55,

\tau_{ S }=\int_0^{\infty} \tau_\lambda G _{\lambda, S } d \lambda / G _{ S }=\int_0^{\infty} \tau_\lambda E _{\lambda, b }(\lambda, 5800  K ) d \lambda / E _{ b }(5800  K )

\tau_{ S }=\tau_{\lambda, b } \int_0^{1.38} E _{\lambda, b }(\lambda, 5800  K ) d \lambda / E _{ b }(5800  K )=\tau_{\lambda, 1} F _{\left(0 \rightarrow \lambda_1\right)}=0.7 \times 8.56=0.599

where \lambda_1  T _{ S }=1.38 \times 5800=8000  \mu m \cdot K and from Table 12.1, F _{\left(0 \rightarrow \lambda_1\right)}=0.856. From Eqs. 12.52 and 12.57,

\rho_{ S }=\int_0^{\infty} \rho_\lambda G _{\lambda, S } d \lambda / G _{ S }=\rho_{\lambda, 1} F _{\left(0 \rightarrow \lambda_1\right)}=0.1 \times 0.856=0.086

\alpha_{ S }=1-\rho_{ S }-\tau_{ S }=1-0.086-0.599=0.315.

(c) For the surface at T_s = 350 K, the emissivity can be determined from Eq. 12.38. Since the surface is diffuse, according to Eq. 12.65, \alpha_{\lambda} = \varepsilon_{\lambda}, the expression has the form

\varepsilon=\int_0^{\infty} \varepsilon_\lambda E _{\lambda, b }\left( T _{ s }\right) d \lambda / E _{ b }\left( T _{ s }\right)=\int_0^{\infty} \alpha_\lambda  E _{\lambda, b }(350  K ) d \lambda / E _{ b }(350  K )

\varepsilon=\alpha_{\lambda, 1} F _{(0-1.38  \mu m )}+\alpha_{\lambda, 2}\left[1- F _{(0-1.38  \mu m )}\right]=\alpha_{\lambda, 2}=1

where from Table 12.1 with \lambda_1  T_S = 1.38 × 350 = 483 μm·K, F_{(0-\lambda T)} ≈ 0.

(d) The net heat flux by radiation to the surface is determined by a radiation balance

q _{ rad }^{\prime \prime}= G _{ S }-\rho_{ S } G _{ S }-\tau_{ S } G _{ S }- E

q _{ rad }^{\prime \prime}=\alpha_{ S } G _{ S }- E

q _{ rad }^{\prime \prime}=0.315 \times 750  W / m ^2  –  1.0 \times 5.67 \times 10^{-8}  W / m ^2 \cdot K ^4(350  K )^4 = -615  W / m ^2.

12.59b

Related Answered Questions