Question 12.117: KNOWN: Thermal conductivity, spectral absorptivity and inner......

KNOWN: Thermal conductivity, spectral absorptivity and inner and outer surface conditions for wall of central solar receiver.

FIND: Minimum wall thickness needed to prevent thermal failure. Collector efficiency.

ASSUMPTIONS: (1) Steady-state conditions, (2) Outer surface is opaque and diffuse, (3) Spectral distribution of solar radiation corresponds to blackbody emission at 5800 K.

SCHEMATIC:

12.117
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

ANALYSIS: From an energy balance at the outer surface, \dot{ E }_{\text{in}}=\dot{ E }_{\text {out}},

\alpha_{ S } q _{ S }^{\prime \prime}+\alpha_{\text{sur}} G _{\text{sur}}=\varepsilon \sigma T _{ s , o }^4+ h _{ o }\left( T _{ s , o }- T _{\infty, o }\right)+\frac{ T _{ s , o }- T _{\infty, i }}{( L / k )+\left(1 / h _{ i }\right)}

Since radiation from the surroundings is in the far infrared, α_{\text{sur}} = 0.2. From Table 12.1, λT = (3 μm × 5800 K) = 17,400 μm·K, find F_{(0→3  μm)} = 0.979. Hence,

\alpha_{ s }=\frac{\int_0^{\infty} \alpha_\lambda E _{\lambda, b }(5800  K ) d \lambda}{ E _{ b }}=\alpha_1 F _{(0 \rightarrow 3  \mu m )}+\alpha_2 F _{(3 \rightarrow \infty)}=0.9(0.979)+0.2(0.021)=0.885.

From Table 12.1, λT = (3 μm × 1000 K) = 3000 μm·K, find F_{(0→3  μm)} = 0.273. Hence,

\varepsilon_{ s }=\frac{\int_{ o }^{\infty} \varepsilon_\lambda E _{\lambda, b }(1000  K ) d \lambda}{ E _{ b }}=\varepsilon_1 F _{(0 \rightarrow 3)}+\varepsilon_2 F _{(3 \rightarrow \infty)}=0.9(0.273)+0.2(0.727)=0.391.

Substituting numerical values in the energy balance, find

0.885\left(80,000  W / m ^2\right)+0.2 \times 5.67 \times 10^{-8}  W / m ^2 \cdot K ^4(300  K )^4=0.391 \times 5.67 \times 10^{-8}  W / m ^2 \cdot K ^4(1000  K )^4 + 25  W / m ^2 \cdot K (700  K )+(300  K ) /\left[( L / 15  W / m \cdot K )+\left(1 / 1000  W / m ^2 \cdot K \right)\right]

L = 0.129 m.

The corresponding collector efficiency is

\eta=\frac{ q _{\text {use}}^{\prime \prime}}{ q _{ S }^{\prime \prime}}=\left[\frac{ T _{s , o }- T _{\infty, i }}{( L / k )+\left(1 / h _{ i }\right)}\right] / q _{ S }^{\prime \prime}

\eta=\left[\frac{300  K }{(0.129  m / 15  W / m \cdot K )+\left(0.001  m ^2 \cdot K / W \right)}\right] / 80,000  W / m ^2=0.391 \text { or } 39.1 \%.

COMMENTS: The collector efficiency could be increased and the outer surface temperature reduced by decreasing the value of L.

Table: 12.1 Blackbody Radiation Functions

\lambda T,(μm.K) F_{0→\lambda} I_{\lambda ,b}(\lambda ,T)/\sigma T^5,(μm.K.sr)^{-1} \frac{I_{\lambda ,b}(\lambda,T)}{I_{\lambda ,b}(\lambda_{max},T)}
200 0 0.375034 ×10^{-27} 0
400 0 0.490335 ×10^{-13} 0
600 0 0.104046 ×10^{-8} 0.000014
800 0.000016 0.991126 ×10^{-7} 0.001372
1,000 0.000321 0.118505 ×10^{-5} 0.016406
1,200 0.002134 0.523927 ×10^{-5} 0.072534
1,400 0.00779 0.134411 ×10^{-4} 0.186082
1,600 0.019718 0.24913 0.344904
1,800 0.039341 0.375568 0.519949
2,000 0.066728 0.493432 0.683123
2,200 0.100888 0.589649 ×10^{-4} 0.816329
2,400 0.140256 0.658866 0.912155
2,600 0.18312 0.701292 0.970891
2,800 0.227897 0.720239 0.997123
2,898 0.250108 0.722318 ×10^{-4} 1
3,000 0.273232 0.720254 ×10^{-4} 0.997143
3,200 0.318102 0.705974 0.977373
3,400 0.361735 0.681544 0.943551
3,600 0.403607 0.650396 0.900429
3,800 0.443382 0.615225 ×10^{-4} 0.851737
4,000 0.480877 0.578064 0.800291
4,200 0.516014 0.540394 0.748139
4,400 0.548796 0.503253 0.69672
4,600 0.57928 0.467343 0.647004
4,800 0.607559 0.433109 0.59961
5,000 0.633747 0.400813 0.554898
5,200 0.65897 0.370580 ×10^{-4} 0.513043
5,400 0.68036 0.342445 0.474092
5,600 0.701046 0.316376 0.438002
5,800 0.720158 0.292301 0.404671
6,000 0.737818 0.270121 0.373965
6,200 0.75414 0.249723 ×10^{-4} 0.345724
6,400 0.769234 0.230985 0.319783
6,600 0.783199 0.213786 0.295973
6,800 0.796129 0.198008 0.274128
7,000 0.808109 0.183534 0.25409
7,200 0.819217 0.170256 ×10^{-4} 0.235708
7,400 0.829527 0.158073 0.218842
7,600 0.839102 0.146891 0.20336
7,800 0.848005 0.136621 0.189143
8,000 0.856288 0.127185 0.176079
8,500 0.874608 0.106772 ×10^{-4} 0.147819
9,000 0.890029 0.901463 × 10^{-5} 0.124801
9,500 0.903085 0.765338 0.105956
10,000 0.914199 0.653279× 10^{-5} 0.090442
10,500 0.92371 0.560522 0.0776
11,000 0.93189 0.483321 0.066913
11,500 0.939959 0.418725 0.05797
12,000 0.945098 0.364394 ×10^{-5} 0.050448
13,000 0.955139 0.279457 0.038689
14,000 0.962898 0.217641 0.030131
15,000 0.969981 0.171866 ×10^{-5} 0.023794
16,000 0.973814 0.137429 0.019026
18,000 0.98086 0.908240 ×10^{-6} 0.012574
20,000 0.985602 0.62331 0.008629
25,000 0.992215 0.276474 0.003828
30,000 0.99534 0.140469 ×10^{-6} 0.001945
40,000 0.997967 0.473891×10^{-7} 0.000656
50,000 0.998953 0.201605 0.000279
75,000 0.999713 0.418597 ×10^{-8} 0.000058
100,000 0.999905 0.135752 0.000019

Related Answered Questions