Question A.3: Let A = |-2 2 -3 2 1 -6 -1 -2 0|...

Let \overline{A} = \left|\begin{matrix}-2 &2 &-3  \\ 2& 1& -6 \\ -1& -2& 0  \end{matrix} \right|

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Its characteristics equation is

\left|\begin{matrix}-2-λ &2 &-3  \\ 2& 1-λ & -6 \\ -1& -2& 0-λ  \end{matrix} \right|

(-2 – λ)(-λ + λ² – 12) – 2(-2λ – 6) – 3(-4 + 1 – λ) = 0
λ³ + λ² – 21λ – 45 = 0
(λ – 5)(λ – 3)(λ – 3) = 0
λ = 5, – 3, -3
The eigenvector is found by substituting the eigenvalues. For λ = 5

– \left|\begin{matrix}-7 &2 &-3  \\ 2& -4 & -6 \\ -1& -2& -5  \end{matrix} \right|\left|\begin{matrix} x \\ y \\ z \end{matrix} \right|=\left|\begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right|

By manipulation of the rows, this can be reduced to

  \left|\begin{matrix}-1 &-2 &-5  \\ 0& 16 & 32 \\ 0& 0& 0  \end{matrix} \right|\left|\begin{matrix} x \\ y \\ z \end{matrix} \right|=\left|\begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right|

Therefore

-x – 2y – 5z = 0
16y + 32z = 0

As eigenvectors are not unique, by assuming that z = 1, and solving, one eigenvector is
(-1, -2, 1)^t
Similarly, eigenvectors for λ = -3 can be found. This gives the following values:

\left|\begin{matrix} x_{1} \\ x_{2} \\ (1/3)(x_{1}+2x_{2}) \end{matrix} \right|

Choose arbitrarily x_{1} = 2, x_{2} = -1 and then
(2, -1, 0)^t
is another eigenvector. Similarly,
(3, 0, 1)^t
can be the third eigenvector. A matrix formed of these vectors is

\overline{P} = \left|\begin{matrix}-1 &2 &3  \\ -2& -1& 0 \\ 1& 0& 1  \end{matrix} \right|

and the diagonalization is obtained:

\overline{P}^{-1} \overline{A}\overline{P}= \left|\begin{matrix}5 &0 &0  \\ 0& -3& 0 \\ 0& 0& -3  \end{matrix} \right|

This contains the eigenvalues as the diagonal elements.
Now choose some other eigenvectors and form a new matrix, say,

\overline{P} = \left|\begin{matrix}1 &1 &3  \\ 2& 1& 0 \\ -1& 1& 1  \end{matrix} \right|

Again with these values, \overline{P}^{-1} A\overline{P} is

\left|\begin{matrix}1 &1 &3  \\ 2& 1& 0 \\ -1& 1& 1  \end{matrix} \right|^{-1} \left|\begin{matrix}-2 &2 &-3  \\ 2& 1&-6 \\ -1& -2& 0  \end{matrix} \right| \left|\begin{matrix}1 &1 &3  \\ 2& 1& 0 \\ -1& 1& 1  \end{matrix} \right|=\left|\begin{matrix}5&0 &0  \\ 0& -3& 0 \\ 0& 0& -3  \end{matrix} \right|

This is the same result as before.

Related Answered Questions

Question: A.2

Verified Answer:

The characteristic equation is given by \le...
Question: A.10

Verified Answer:

From Equations A.75 and A.76, l_{ij}=a_{ij...
Question: A.7

Verified Answer:

\overline{A}_{1} = \left|\begin{matrix}2 &a...
Question: A.5

Verified Answer:

Attach a unit matrix of 2 × 2 and perform the oper...
Question: A.1

Verified Answer:

This matrix can be reduced to an upper triangular ...