Question 3.5.4: Let f and g be real functions defined by f(x) = √x - 1 and g......

Let f and g be real functions defined by f(x)=\sqrt{x-1} and g(x)=\sqrt{x+1} .

Find (i)(f+g)(x) \qquad (ii) (f-g)(x)\qquad (iii) (f g)(x)\qquad  (iv) \left(\frac{f}{g}\right)(x) .

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Clearly, f(x)=\sqrt{x-1} is defined for all real values of x for which x-1 \geq 0 , i.e., x \geq 1 . So, \operatorname{dom}(f)=[1, \infty) .

Also, g(x)=\sqrt{x+1} is defined for all real values of x for which x+1 \geq 0 , i.e., x \geq-1 . So, \operatorname{dom}(g)=[-1, \infty) .

\therefore \quad \operatorname{dom}(f) \cap \operatorname{dom}(g)=\{1, \infty) \cap[-1, \infty)=[1, \infty) .

(i) (f+g):[1, \infty) \rightarrow R is given by

(f+g)(x)=f(x)+g(x)=(\sqrt{x-1}+\sqrt{x+1}) .

(ii) (f-g):[1, \infty) \rightarrow R is given by

(f-g)(x)=f(x)-g(x)=(\sqrt{x-1}-\sqrt{x+1}) .

(iii) (f g):[1, \infty) \rightarrow R is given by

(f g)(x)=f(x) \cdot g(x)=\sqrt{x-1} \times \sqrt{x+1}=\sqrt{x^{2}-1} .
\begin{array}{l}(iv)  \{x: g(x)=0\}=\{x: \sqrt{x+1}=0\}=\{x: x+1=0\}=\{-1\} .\\  \\\therefore \quad \operatorname{dom}(f) \cap \operatorname{dom}(g)-\{x: g(x)=0\} \\  \\=[1, \infty) \cap[-1, \infty)-\{-1\}=[1, \infty) . \\  \\\therefore \quad \frac{f}{g} \rightarrow[1, \infty) \rightarrow R \text { is given by }\\  \\\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{\sqrt{x-1}}{\sqrt{x  +  1}} .\end{array}

Related Answered Questions

Question: 3.5.13

Verified Answer:

Let f: R \rightarrow R: f(x) and ...
Question: 3.5.12

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.11

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.10

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.9

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.8

Verified Answer:

Let f: R \rightarrow R: f(x)=x be...