Question 3.5.5: Let f and g be real functions , defined by f(x) = √x + 2 and......

Let f and ge real functions, defined by f(x)=\sqrt{x+2} and g(x)=\sqrt{4-x^{2}} .

Find (i)(f+g)(x) \qquad (ii) (f-g)(x)\qquad  (iii) (f g)(x)\qquad ( iv) (f f)(x)\\

(v) (g g)(x)\qquad  (vi) \left(\frac{f}{g}\right)(x) .

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Clearly, f(x)=\sqrt{x+2} is defined for all x \in R such that

\begin{aligned}& x+2 \geq 0, \text { i.e., } x \geq-2 . \\\therefore \quad & \operatorname{dom}(f)=[-2, \infty) .\end{aligned}

Again, g(x)=\sqrt{4-x^{2}} is defined for all x \in R such that4-x^{2} \geq 0.

But, 4-x^{2} \geq 0 \Rightarrow x^{2}-4 \leq 0 \Rightarrow(x+2)(x-2) \leq 0 \Rightarrow x \in[-2,2] .

\therefore \quad \operatorname{dom}(g)=[-2,2] .

\therefore \quad \operatorname{dom}(f) \cap \operatorname{dom}(g)=[-2, \infty) \cap[-2,2]=[-2,2] .

(i) (f+g):[-2,2] \rightarrow R is given by

(f+g)(x)=f(x)+g(x)=\sqrt{x+2}+\sqrt{4-x^{2}} .

(ii) (f-g):[-2,2] \rightarrow R is given by

(f-g)(x)=f(x)-g(x)=\sqrt{x+2}-\sqrt{4-x^{2}} .

(iii) (f g):[-2,2] \rightarrow R is given by

\begin{aligned}(f g)(x) & =f(x) \cdot g(x)=(\sqrt{x+2})\left(\sqrt{4-x^{2}}\right) \\& =\sqrt{(x+2)^{2}(2-x)}=(x+2) \sqrt{(2-x)}.\end{aligned}

(iv) (f f):[-2,2] \rightarrow R is given by

(f f)(x)=f(x) \cdot f(x)=(\sqrt{x+2})(\sqrt{x+2})=(x+2) .

(v) (g g):[-2,2] \rightarrow R is given by

(g g)(x)=g(x) \cdot g(x)=\left(\sqrt{4-x^{2}}\right)\left(\sqrt{4-x^{2}}\right)=\left(4-x^{2}\right) .

(vi) \{x: g(x)=0\}=\left\{x: 4-x^{2}=0\right]=\{x:(2-x)(2+x)=0\}=\{-2,2\} .

\begin{aligned}\therefore \quad \operatorname{dom}\left(\frac{f}{g}\right) & =\operatorname{dom}(f) \cap \operatorname{dom}\{g\}-\{x: g(x)=0\} \\& =[-2,2]-\{-2,2\}=(-2,2) . \\\therefore \quad \frac{f}{g}(-2,2) & \rightarrow R \text { is given by }\end{aligned}\\

\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{\sqrt{x  +  2}}{\sqrt{4-x^{2}}}=\frac{\sqrt{2   +  x}}{(\sqrt{2  +  x})(\sqrt{2-x})}=\frac{1}{(\sqrt{2-x})}.

Related Answered Questions

Question: 3.5.13

Verified Answer:

Let f: R \rightarrow R: f(x) and ...
Question: 3.5.12

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.11

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.10

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.9

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.8

Verified Answer:

Let f: R \rightarrow R: f(x)=x be...