Question 3.5.3: Let f and g be real functions, defined by f(x) = 1/(x + 4) a......

Let f and g be real functions, defined by f(x)=\frac{1}{(x  +  4)} and g(x)=(x+4)^{3} .

Find (i)(f+g)(x)\qquad (ii) (f-g)(x) \qquad(iii) (f g)(x)\qquad  (i v)\left(\frac{f}{g}\right)(x) \qquad (v) \left(\frac{1}{f}\right)(x)

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Clearly, f(x)=\frac{1}{(x  +  4)} is defined for all real values of x except that at which x+4=0 , i.e., x=-4 .

\therefore \quad \operatorname{dom}(f)=R-\{-4\} .

And, g(x)=(x+4)^{3} is defined for all x \in R . So, \operatorname{dom}(g)=R .

\therefore \quad \operatorname{dom}(f) \cap \operatorname{dom}(g)=R-\{-4\} \cap R=R-\{-4\} .

(i) (f+g): R-\{-4\} \rightarrow R is given by

(f+g)(x)=f(x)+g(x)=\frac{1}{(x  +  4)}+(x+4)^{3}=\frac{1  +  (x  +  4)^{4}}{(x  +  4)}.

(ii) (f-g): R-\{-4\} \rightarrow R is given by

(f-g)(x)=f(x)-g(x)=\frac{1}{(x  +  4)}-(x+4)^{3}=\frac{1-(x  +  4)^{4}}{(x  +  4)}.

(iii) (f g): R-\{-4\} \rightarrow R is given by

(f g)(x)=f(x) \cdot g(x)=\frac{1}{(x  +  4)} \times(x+4)^{3}=(x+4)^{2} .

(iv) \{x: g(x)=0\}=\left\{x:(x+4)^{3}=0\right\}=\{x: x+4=0\}=\{-4\} .

\therefore \quad \operatorname{dom}\left(\frac{f}{g}\right)=\operatorname{dom}(f) \cap \operatorname{dom}(g)-\{x: g(x)=0\}=R-\{-4\} .

\left(\frac{f}{g}\right): R-\{-4\} \rightarrow R is given by

\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{\frac{1}{(x  +  4)}}{(x+4)^{3}}=\frac{1}{(x+4)^{4}}, x \neq-4 .

(v) Clearly, f(x) \neq 0 for any x \in R-\{-4\} .

\therefore \quad \frac{1}{f}: R-\{-4\} \rightarrow R is given by

\left(\frac{1}{f}\right)(x)=\frac{1}{f(x)}=\frac{1}{\frac{1}{(x  +  4)}}=(x+4).

Related Answered Questions

Question: 3.5.13

Verified Answer:

Let f: R \rightarrow R: f(x) and ...
Question: 3.5.12

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.11

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.10

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.9

Verified Answer:

Let f: R \rightarrow R: f(x)=x an...
Question: 3.5.8

Verified Answer:

Let f: R \rightarrow R: f(x)=x be...