Locate the centroid C of the area A shown in Fig. A.9a
Selecting the coordinate axes shown in Fig. A.9b, note that the centroid C must be located on the y axis, since this is an axis of symmetry. Thus, \bar{X} = 0.
Divide A into its component parts A_1 \text { and } A_2 and use the second of Eqs. (A.6) \bar{X}=\frac{\sum_i A_i \bar{x}_i}{\sum_i A_i} \quad \bar{Y}=\frac{\sum_i A_i \bar{y}_i}{\sum_i A_i} to determine the ordinate \bar{Y} of the centroid. The actual computation is best carried out in tabular form:
\bar{Y}=\frac{\sum_i A_i \bar{y}_i}{\sum_i A_i}=\frac{184 \times 10^3 \ mm ^3}{4 \times 10^3 \ mm ^2}=46 \ mm
Area, mm² | \bar{y}_i, mm | A_i \bar{y}_i, mm ^3 | |
A _1 A _2 |
\begin{aligned}(20)(80) & =1600 \\(40)(60) & =2400 \\\hline \sum_i A_i &=4000\end{aligned} | 70 30 |
\begin{array}{r}112 \times 10^3 \\72 \times 10^3 \\\hline \sum_i A_i \bar{y}_i=184 \times10^3\end{array} |