Question 8.6: Mineral water bottle fills Study A machine is set to fill pl......

Mineral water bottle fills Study

A machine is set to fill plastic bottle containers with 750 ml of mineral water. To meet quality standards, the variability of the fills of all the bottles should be no more than σ = 5 ml. To test this quality requirement, a random sample of 20 filled bottles is selected and their volumes measured. The standard deviation of the fills was found to be 5.8 ml.

(See Excel file C8.2 – bottle fills.)

Test, at the 5% level of significance, whether the filling machine is operating within the quality standards (i.e. filling bottles with a standard deviation (σ) of fills of no more than 5 ml (i.e. σ² = 25).

Note: The population parameter being tested is a single population variance (σ²)

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Step 1: Define the null and alternative hypothesis

H_0 : σ² ≤ 25 The management question resides in H_0.

H_1 : σ² > 25

This is a one-sided upper-tailed test.

Step 2: Determine the region of acceptance of the null hypothesis (use α = 0.05)

The test statistic is the chi-square statistic, χ².

The critical chi -square limit is χ²-crit = χ²(0.05,19) = 30.14 (Table 3, Appendix 1).

In Excel, use CHISQ.INV.RT(0.05,19).

Thus the region of acceptance for H_0 is χ² ≤ 30.14.

The decision rule for accepting or rejecting H_0 is as follows:

  • Accept H_0 if χ²-stat ≤ 30.14
  • Reject H_0 in favour of H_1 if χ²-stat > 30.14

Step 3: Calculate the sample test statistic (χ²-stat)

χ² – stat = \frac{(20-1)(5.8)^2}{5^2} = 25.57 Use     Formula 8.4

Also, the p-value = 0.1427 (In Excel, use CHISQ.DIST.RT(25.57,19) = 0.1427)

Step 4: Compare the sample test statistic to the area of acceptance

The sample test statistic, lies within the region of acceptance of H_0.

(i.e. χ²-stat (= 25.57) < χ²-crit (= 30.14)). Alternatively, p-value (= 0.1427) > α = 0.05.

Refer to Figure 8.14 which shows the sample test statistic (χ²-stat) in relation to the regions of acceptance and rejection of H_0.

Step 5: Draw statistical and management conclusions

Statistical Conclusion

Since χ²-stat lies within the acceptance region, accept H_0 at the 5% level of significance. There is insufficient sample evidence to reject H_0 in favour of H_1.

Management Conclusion

It can be concluded, with 95% confidence, that the variability of bottle fills is no more than σ = 5 ml. Thus the bottling machine is producing bottled mineral water within the product specification limits of variability.

TABLE 3 The Chi-square distribution (χ²) The entries in this table are critical χ² limits where α is the area to the right of the critical limit. In Excel (2016): CHISQ.INV.RT(α, df)
α 0.005 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 0.995
df
1 7.879 6.635 5.024 3.841 2.706 0.016 0.004 0.001 0.000 0.000
2 10.597 9.210 7.378 5.991 4.605 0.211 0.103 0.051 0.020 0.010
3 12.838 11.345 9.348 7.815 6.251 0.584 0.352 0.216 0.115 0.072
4 14.860 13.277 11.143 9.488 7.779 1.064 0.711 0.484 0.297 0.207
5 16.750 15.086 12.833 11.070 9.236 1.610 1.145 0.831 0.554 0.412
6 18.548 16.812 14.449 12.592 10.645 2.204 1.635 1.237 0.872 0.676
7 20.278 18.475 16.013 14.067 12.017 2.833 2.167 1.690 1.239 0.989
8 21.955 20.090 17.535 15.507 13.362 3.490 2.733 2.180 1.646 1.344
9 23.589 21.666 19.023 16.919 14.684 4.168 3.325 2.700 2.088 1.735
10 25.188 23.209 20.483 18.307 15.987 4.865 3.940 3.247 2.558 2.156
11 26.757 24.725 21.920 19.675 17.275 5.578 4.575 3.816 3.053 2.603
12 28.300 26.217 23.337 21.026 18.549 6.304 5.226 4.404 3.571 3.074
13 29.819 27.688 24.736 22.362 19.812 7.042 5.892 5.009 4.107 3.565
14 31.319 29.141 26.119 23.685 21.064 7.790 6.571 5.629 4.660 4.075
15 32.801 30.578 27.488 24.996 22.307 8.547 7.261 6.262 5.229 4.601
16 34.267 32.000 28.845 26.296 23.542 9.312 7.962 6.908 5.812 5.142
17 35.718 33.409 30.191 27.587 24.769 10.085 8.672 7.564 6.408 5.697
18 37.156 34.805 31.526 28.869 25.989 10.865 9.390 8.231 7.015 6.265
19 38.582 36.191 32.852 30.144 27.204 11.651 10.117 8.907 7.633 6.844
20 39.997 37.566 34.170 31.410 28.412 12.443 10.851 9.591 8.260 7.434
21 41.401 38.932 35.479 32.671 29.615 13.240 11.591 10.283 8.897 8.034
22 42.796 40.289 36.781 33.924 30.813 14.041 12.338 10.982 9.542 8.643
23 44.181 41.638 38.076 35.172 32.007 14.848 13.091 11.689 10.196 9.260
24 45.559 42.980 39.364 36.415 33.196 15.659 13.848 12.401 10.856 9.886
25 46.928 44.314 40.646 37.652 34.382 16.473 14.611 13.120 11.524 10.520
26 48.290 45.642 41.923 38.885 35.563 17.292 15.379 13.844 12.198 11.160
27 49.645 46.963 43.195 40.113 36.741 18.114 16.151 14.573 12.879 11.808
28 50.993 48.278 44.461 41.337 37.916 18.939 16.928 15.308 13.565 12.461
29 52.336 49.588 45.722 42.557 39.087 19.768 17.708 16.047 14.256 13.121
30 53.672 50.892 46.979 43.773 40.256 20.599 18.493 16.791 14.953 13.787
31 55.003 52.191 48.232 44.985 41.422 21.434 19.281 17.539 15.655 14.458
32 56.328 53.486 49.480 46.194 42.585 22.271 20.072 18.291 16.362 15.134
33 57.648 54.776 50.725 47.400 43.745 23.110 20.867 19.047 17.074 15.815
34 58.964 56.061 51.966 48.602 44.903 23.952 21.664 19.806 17.789 16.501
35 60.275 57.342 53.203 49.802 46.059 24.797 22.465 20.569 18.509 17.192
36 61.581 58.619 54.437 50.998 47.212 25.643 23.269 21.336 19.233 17.887
37 62.883 59.893 55.668 52.192 48.363 26.492 24.075 22.106 19.960 18.586
38 64.181 61.162 56.896 53.384 49.513 27.343 24.884 22.878 20.691 19.289
39 65.476 62.428 58.120 54.572 50.660 28.196 25.695 23.654 21.426 19.996
40 66.766 63.691 59.342 55.758 51.805 29.051 26.509 24.433 22.164 20.707
45 73.166 69.957 65.410 61.656 57.505 33.350 30.612 28.366 25.901 24.311
50 79.490 76.154 71.420 67.505 63.167 37.689 34.764 32.357 29.707 27.991
55 85.749 82.292 77.380 73.311 68.796 42.060 38.958 36.398 33.570 31.735
60 91.952 88.379 83.298 79.082 74.397 46.459 43.188 40.482 37.485 35.534
65 98.105 94.422 89.177 84.821 79.973 50.883 47.450 44.603 41.444 39.383
70 104.215 100.425 95.023 90.531 85.527 55.329 51.739 48.758 45.442 43.275
75 110.286 106.393 100.839 96.217 91.061 59.795 56.054 52.942 49.475 47.206
80 116.321 112.329 106.629 101.879 96.578 64.278 60.391 57.153 53.540 51.172
85 122.325 118.236 112.393 107.522 102.079 68.777 64.749 61.389 57.634 55.170
90 128.299 124.116 118.136 113.145 107.565 73.291 69.126 65.647 61.754 59.196
95 134.247 129.973 123.858 118.752 113.038 77.818 73.520 69.925 65.898 63.250
100 140.169 135.807 129.561 124.342 118.498 82.358 77.929 74.222 70.065 67.328
110 151.948 147.414 140.917 135.480 129.385 91.471 86.792 82.867 78.458 75.550
120 163.648 158.950 152.211 146.567 140.233 100.624 95.705 91.573 86.923 83.852
130 175.278 170.423 163.453 157.610 151.045 109.811 104.662 100.331 95.451 92.222
150 198.360 193.208 185.800 179.581 172.581 128.275 122.692 117.985 112.668 109.142
160 209.824 204.530 196.915 190.516 183.311 137.546 131.756 126.870 121.346 117.679
170 221.242 215.812 207.995 201.423 194.017 146.839 140.849 135.790 130.064 126.261
180 232.620 227.056 219.044 212.304 204.704 156.153 149.969 144.741 138.820 134.884
190 243.959 238.266 230.064 223.160 215.371 165.485 159.113 153.721 147.610 143.545
200 255.264 249.445 241.058 233.994 226.021 174.835 168.279 162.728 156.432 152.241
f 8.14

Related Answered Questions