Question 7.SP.11: Move capacitor CS from its parallel connection across RS2 to......

Move capacitor CSC_S from its parallel connection across RS2R_{S2} to a position across RS1R_{S1} in Fig. 4-33.   Let RG=1 MΩ, RS1=800 Ω, RS2=1.2 kΩ,R_G = 1  MΩ,  R_{S1} = 800  Ω,  R_{S2} = 1.2  kΩ, and RL=1 kΩR_L = 1  kΩ.   The JFET is characterized by gm=0.002 Sg_m = 0.002  S and rds=30 kΩr_{ds} = 30  kΩ.   Find   (a) the voltage-gain ratio Av=vL/vi,A_v = v_L/v_i,    (b) the current-gain ratio Ai=iL/iiA_i = i_L/i_i,   (c) the input impedance RinR_{in}, and   (d) the output impedance RoR_o.

4.33
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) The equivalent circuit (with current-source JFET model) is given in Fig. 7-18.   By KVL,
vgs=vi – vLv_{g s} = v_{i}  –  v_{L}                      (1)

Using viv_i and vLv_L as node voltages, we have
ii=vi – vLRGi_{i} = {\frac{v_{i}  –  v_{L}}{R_{G}}}                (2)

Now let              1Req=1rds+1RS2+1RL=130 × 103+11.2 × 103+11 × 103=1536{\frac{1}{R_{e q}}} = {\frac{1}{r_{d s}}} + {\frac{1}{R_{S2}}} + {\frac{1}{R_{L}}} = {\frac{1}{30  \times  10^{3}}} + {\frac{1}{1.2  \times  10^{3}}} + {\frac{1}{1  \times  10^{3}}} = {\frac{1}{536}}

By KCL and Ohm’s law,
vL=(ii+gmvgs)Reqv_{L} = (i_{i} + g_{m}v_{gs})R_{e q}             (3)

Substitution of (1) and (2) into (3) and rearrangement lead to
Av=vLvi=(gmRG + 1)ReqRG + (gmRG + 1)Req=[(0.002)(1 × 106) + 1](536)1 × 106 + [(0.002)(1 × 106) + 1](536)=0.517A_{v} = {\frac{v_{L}}{v_{i}}} = {\frac{(g_{m}R_{G}  +  1)R_{e q}}{R_{G}  +  (g_{m}R_{G}  +  1)R_{e q}}} = {\frac{\lbrack(0.002)(1  \times  10^{6})  +  1\rbrack(536)}{1  \times  10^{6}  +  \lbrack(0.002)(1  \times  10^{6})  +  1\rbrack(536)}} = 0.517

(b)  The current-gain ratio follows from part a as
Ai=iLii=vL/RL(vi – vL)/RG=AvRG(1 – Av)RL=(0.517)(1 × 106)(1 – 0.517)(1 × 103)=1070.4A_{i} = {\frac{i_{L}}{i_{i}}} = {\frac{v_{L}/R_{L}}{(v_{i}  –  v_{L})/R_{G}}} = {\frac{A_{v}R_{G}}{(1  –  A_{v})R_{L}}} = {\frac{(0.517)(1  \times  10^{6})}{(1  –  0.517)(1  \times  10^{3})}} = 1070.4

(c) From (2),                 ii=vi – vLRG=vi(1 – Av)RGi_{i} = {\frac{v_{i}  –  v_{L}}{R_{G}}} = {\frac{v_{i}(1  –  A_{v})}{R_{G}}}        (4)

RinR_{in} is found directly from (4) as
Rin=viii=RG1Av=1 × 1061 – 0.517=2.07MΩR_{\mathrm{in}} = {\frac{v_{i}}{i_{i}}} = {\frac{R_{G}}{1-A_{v}}} = {\frac{1  \times  10^{6}}{1  –  0.517}} = 2.07\,\mathrm{M\Omega}

(d) We remove RL R_L and connect a driving-point source oriented such that vdp=vLv_{dp} = v_L.   With viv_i deactivated (shorted), vgs=vdpv_{gs} = -v_{dp}.   Then, by KCL,
idp=vdp(1RS2+1rds+1RG) – gmvgs=vdp(1RS2+1rds+1RG+gm)i_{d p} = v_{dp}\left(\frac{1}{R_{S2}} + \frac{1}{r_{ds}} + \frac{1}{R_{G}}\right)  –  g_{m}v_{g s} = v_{dp}\left(\frac{1}{R_{S2}} + \frac{1}{r_{d s}} + \frac{1}{R_{G}} + g_{m}\right)

and          Ro=vdbidb=11RS2 + 1rds + 1RG + gm=111.2 × 103+130 × 103+11 × 106+0.002=348.7 ΩR_{o}={\frac{v_{d b}}{i_{db}}} = \frac{1}{\frac{1}{{{R_{S2}}}}  +  \frac{1}{r_{d s}}  +  \frac{1}{R_{G}}  +  g_{m}} = \frac{1}{\frac{1}{1.2  \times  10^{3}} + {\frac{1}{30  \times  10^{3}}} + {\frac{1}{1  \times  10^{6}}} + 0.002} = 348.7  Ω

Related Answered Questions

Question: 7.SP.18

Verified Answer:

(a) The perveance can be evaluated at any point on...
Question: 7.SP.21

Verified Answer:

The equivalent circuit of Fig. 7-9(b) is applicabl...
Question: 7.SP.20

Verified Answer:

(a)                 r_{p} \approx {\frac{\D...