Holooly Plus Logo

Question 12.10: Natural Convective Flow Inside an Air Space Consider double-......

Natural Convective Flow Inside an Air Space

Consider double-glazed window plates with spacing of 12.7 mm and height of 0.6 m kept at temperatures of 17°C and 0°C. Calculate the natural convective heat transfer coefficient.

Given: Spacing L = 0.0127 m, height H = 0.60 m

Find: h_{con} using Equation 12.25 for natural internal flow over plates
Lookup values: From property tables of air (Table A1) at a mean temperature of (0°C + 17°C)/2 = 8.5°C: \rho = 1.271  kg/m^{3}, \mu = 1.75 × 10^{−5}  Pa ⋅ s, c_{p} = 1004  J/(kg ⋅ K), k = 0.0246  W/(m · K),

\beta = \frac{1}{(273.15 + 8.5)} = 0.00355  K^{-1}

 

u = 1.40 \times 10^{-5}  m^{2}/s, \alpha = 1.95 \times 10^{-5}  m^{2}/s  and Pr = 0.717

TABLE A.1
(IP Units) Transport Properties of Standard, Dry Air (14.7 psia)
°R °F ρ (lbm/ft3) cp (Btu/lb · °R) k (cp/cv) μ x 10(lbm/ft · s)
180 -280 0.2247 0.2456 0.0466
198 -262 0.2033 0.2440 1.4202 0.0513
216 -244 0.1858 0.2430 1.4166 0.0559
234 -226 0.1711 0.2423 1.4139 0.0604
252 -208 0.1586 0.2418 1.4119 0.0648
270 -190 0.1478 0.2414 1.4102 0.0691
288 -172 0.1384 0.2411 1.4089 0.0733
306 -154 0.1301 0.2408 1.4079 0.0774
324 -136 0.1228 0.2406 1.4071 0.0815
342 -118 0.1163 0.2405 1.4064 0.0854
360 -100 0.1104 0.2404 1.4057 0.0892
369 -91 0.1078 0.2403 1.4055 0.0911
378 -82 0.1051 0.2403 1.4053 0.0930
387 -73 0.1027 0.2403 1.4050 0.0949
396 -64 0.1003 0.2402 1.4048 0.0967
405 -55 0.0981 0.2402 1.4046 0.0986
414 -46 0.0959 0.2402 1.4044 0.1004
423 -37 0.0939 0.2402 1.4042 0.1022
432 -28 0.0919 0.2401 1.4040 0.1039
441 -19 0.0901 0.2401 1.4038 0.1057
450 -10 0.0882 0.2401 1.4036 0.1074
459.7 0 0.0865 0.2401 1.4034 0.1092
468 8 0.0848 0.2401 1.4032 0.1109
486 26 0.0817 0.2492 1.4029 0.1143
504 44 0.0787 0.2402 1.4024 0.1176
522 62 0.0760 0.2403 1.4020 0.1208
540 80 0.0735 0.2404 1.4017 0.1241
558 98 0.0711 0.2405 1.4013 0.1272
576 116 0.0689 0.2406 1.4008 0.1303
594 134 0.0668 0.2407 1.4004 0.1334
612 152 0.0648 0.2409 1.3999 0.1364
630 170 0.0630 0.2411 1.3993 0.1394
648 188 0.0612 0.2412 1.3987 0.1423
666 206 0.0595 0.2415 1.3981 0.1452
684 224 0.0580 0.2417 1.3975 0.1479
702 242 0.0565 0.2420 1.3968 0.1508
720 260 0.0551 0.2422 1.3961 0.1536
738 278 0.0537 0.2425 1.3953 0.1563
756 296 0.0525 0.2428 1.3946 0.1590
774 314 0.0512 0.2432 1.3938 0.1617
792 332 0.0501 0.2435 1.3929 0.1643
810 350 0.0490 0.2439 1.3920 0.1670
100 -173.15 3.598 1.028 6.929
110 -163.15 3.256 1.022 1.420 7.633
120 -153.15 2.975 1.017 1.416 8.319
130 -143.15 2.740 1.014 1.413 8.990
140 -133.15 2.540 1.012 1.411 9.646
150 -123.15 2.367 1.010 1.410 10.28
160 -113.15 2.217 1.009 1.408 10.91
170 -103.15 2.085 1.008 1.407 11.52
180 -93.15 1.968 1.007 1.407 12.12
190 -83.15 1.863 1.007 1.406 12.71
200 -73.15 1.769 1.006 1.405 13.28
210 -63.15 1.684 1.006 1.405 13.85
220 -53.15 1.607 1.006 1.404 14.40
230 -43.15 1.537 1.006 1.404 14.94
240 -33.15 1.473 1.005 1.404 15.47
250 -23.15 1.413 1.005 1.403 15.99
260 -13.15 1.359 1.005 1.403 16.50
270 -3.15 1.308 1.006 1.402 17.00
280 6.85 1.261 1.006 1.402 17.50
290 16.85 1.218 1.006 1.402 17.98
300 26.85 1.177 1.006 1.401 18.46
310 36.85 1.139 1.007 1.401 18.93
320 46.85 1.103 1.007 1.400 19.39
330 56.85 1.070 1.008 1.400 19.85
340 66.85 1.038 1.008 1.399 20.30
350 76.85 1.008 1.009 1.399 20.75
360 86.85 0.980 1.010 1.398 21.18
370 96.85 0.953 1.011 1.398 21.60
380 106.85 0.928 1.012 1.397 22.02
390 116.85 0.905 1.013 1.396 22.44
400 126.85 0.882 1.014 1.396 22.86
410 136.85 0.860 1.015 1.395 23.27
420 146.85 0.840 1.017 1.394 23.66
430 156.85 0.820 1.018 1.393 24.06
440 166.85 0.802 1.020 1.392 24.85
450 176.85 0.784 1.021 1.392 24.85
Source:    CRC Press, Handbook of Tables for Applied Engineering Science, CRC Press, Inc., Boca Raton, FL, 1973.
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

First, the Rayleigh number is determined from Equation 12.18 as

Ra = \frac{g \beta (\Delta T) L^{3}}{v \alpha}

 

= \frac{9.81  m/s^{2} \times 0.0355  K^{-1} \times (17°C  –  0°C) \times 0.0127^{3}  m^{3}}{1.40 \times 10^{-5}  m^{2}/s \times 1.95 \times 10^{-5}  m^{2}/s}

= 4442

Next, we will determine the Nusselt number using Equation 12.27:

N u_{L} = 0.42  {Ra_{L}}^{1/4} Pr^{0.012} \left\lgroup \frac{L}{H} \right\rgroup^{0.3}

 

= 0.42 \times 4442^{1/4} \times 0.717^{0.012} \times \left\lgroup \frac{0.0127}{0.6} \right\rgroup^{0.3} = 1.083

from which the convective heat transfer coefficient is deduced from Equation 12.16 as

Nu = \frac{h_{con} D}{k}             (12.16)

h_{con} = \frac{0.0246  W/(m \cdot K) \times 1.083}{0.0127  m} = 2.10  W/(m^{2} \cdot K)

Comments
The Nusselt number is close to unity, suggesting that the interpane heat transfer (neglecting the radiative component) is mostly by conduction.
The spacing is small enough to have largely suppressed the onset of a convection loop.

Related Answered Questions