Holooly Plus Logo

Question 13.5: Nitrogen flows isentropically through the pipe in Fig. 13–10......

Nitrogen flows isentropically through the pipe in Fig. 13–10 such that its gage pressure is p = 200 kPa, the temperature is 80°C, and the velocity is 150 m/s. Determine the stagnation temperature and stagnation pressure for this gas. The atmospheric pressure is 101.3 kPa.

fig 13-10
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Fluid Description.   The Mach number for the flow is first determined. The speed of sound for nitrogen at T = (273 + 80) K = 353 K is

c  =  \sqrt{kRT}  =  \sqrt{1.40 (296.8  J/kg · K)(353  K)}  =  383.0  m/s

Thus,

M  =  \frac{V}{c}  =  \frac{150  m/s}{383.0  m/s}  =  0.3917  <  1

Here we have steady subsonic compressible flow.
Stagnation Temperature.   Applying Eq. 13–26, we have

T_0  =  T(1 +  \frac{k  –  1}{2} M^2)  =  (353  K)(1  +  \frac{1.4  –  1}{2} (0.3917)^2)

T_0 = 363.8 K = 364 K

Stagnation Pressure.   The static pressure p = 200 kPa is measured relative to the flow. Applying Eq. 13–27 and reporting the result as an absolute stagnation pressure, we have

p_0  =  p(1  +  \frac{k  –  1}{2} M^2)^{k/(k – 1)}

 

p_0  =  [(101.3  +  200) kPa] (1  +  \frac{1.4  –  1}{2} (0.3917)^2)^{1.4/(1.4 – 1)}

p_0 = 334.91 kPa = 335 kPa
Since k = 1.4 for nitrogen, these values for T_0 and p_0 can also be determined by using Table B–1 with linear interpolation. For example, the temperature ratio in Table B–1 is determined as follows: M = 0.39, T/T_0 = 0.9705, and M = 0.40, T/T_0 = 0.9690. Therefore,
for M = 0.3917

\frac{0.4  –  0.39}{0.4  –  0.3917}  =  \frac{0.9690  –  0.9705}{0.9690  –  T/T_{0}}

0.9690 – T/T_0 = -0.001251
T/T_0 = 0.97025
Thus,

T_0  =  \frac{353  k}{0.97025}  =  363.82  K  =  364  K

NOTE: Because we have an isentropic process, realize there will be no change in the entropy. This can be shown by applying Eq. 13–15.

s  –  s_0  =  c_p  \ln \frac{T}{T_0}  –  R  \ln \frac{p}{p_0}

 

\Delta s  =  [\frac{1.4 (296.8  J/kg · K)}{1.4  –  1}] \ln (\frac{353  K}{363.82  K})  –  (296.8  J/kg · K) \ln (\frac{301.3  kPa}{334.9  kPa})

 

\Delta s  =  0

Related Answered Questions