Holooly Plus Logo

Question 23.16: Obtain the expressions for the Fourier coefficients ao, an a......

Obtain the expressions for the Fourier coefficients a_o, a_n and b_n in Equations (23.3), (23.4) and (23.5).

\begin{aligned} & a_0=\frac{2}{T} \int_0^T f(t) \mathrm{d} t \quad (23.3)\\ & a_n=\frac{2}{T} \int_0^T f(t) \cos \frac{2 n \pi t}{T} \mathrm{~d} t \quad \text { for } n \text { a positive integer }\quad (23.4) \\ & b_n=\frac{2}{T} \int_0^T f(t) \sin \frac{2 n \pi t}{T} \mathrm{~d} t \quad \text { for } n \text { a positive integer }\quad (23.5) \\ & \end{aligned}
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Assume that f (t) can be expressed in the form

f(t)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n \cos \frac{2 n \pi t}{T}+b_n \sin \frac{2 n \pi t}{T}\right)            (23.6)

Multiplying Equation (23.6) through by \cos \frac{2 m \pi t}{T} and integrating from 0 to T we find

\begin{aligned} \int_0^T f(t) \cos \frac{2 m \pi t}{T} \mathrm{~d} t= & \int_0^T \frac{a_0}{2} \cos \frac{2 m \pi t}{T} \mathrm{~d} t \\ & +\int_0^T \sum_{n=1}^{\infty}\left(a_n \cos \frac{2 n \pi t}{T}+b_n \sin \frac{2 n \pi t}{T}\right) \cos \frac{2 m \pi t}{T} \mathrm{~d} t \end{aligned}

If we now assume that it is legitimate to interchange the order of integration and summation we obtain

\begin{aligned} \int_0^T f(t) \cos \frac{2 m \pi t}{T} \mathrm{~d} t= & \int_0^T \frac{a_0}{2} \cos \frac{2 m \pi t}{T} \mathrm{~d} t \\ & +\sum_{n=1}^{\infty} \int_0^T\left(a_n \cos \frac{2 n \pi t}{T}+b_n \sin \frac{2 n \pi t}{T}\right) \cos \frac{2 m \pi t}{T} \mathrm{~d} t \end{aligned}

The first integral on the r.h.s. is easily shown to be zero unless m = 0. Furthermore, we can use the previously found orthogonality properties (Table 23.1) to show that the rest of the integrals on the r.h.s. vanish except for the case when n = m, in which case the r.h.s. reduces to \frac{a_m T}{2}. Consequently,

a_m=\frac{2}{T} \int_0^T f(t) \cos \frac{2 m \pi t}{T} \mathrm{~d} t \quad \text { for all positive integers } m

as required. When m = 0 all terms on the r.h.s. except the first vanish and we obtain

\begin{aligned} \int_0^T f(t) \mathrm{d} t & =\int_0^T \frac{a_0}{2} \mathrm{~d} t \\ & =\frac{a_0 T}{2} \end{aligned}

so that

a_0=\frac{2}{T} \int_0^T f(t) \mathrm{d} t

To obtain the formula for the bn multiply Equation (23.6) through by \sin \frac{2 m \pi t}{T} and integrate from 0 to T.

\begin{aligned} \int_0^T f(t) \sin \frac{2 m \pi t}{T} \mathrm{~d} t= & \int_0^T \frac{a_0}{2} \sin \frac{2 m \pi t}{T} \mathrm{~d} t \\ & +\int_0^T \sum_{n=1}^{\infty}\left(a_n \cos \frac{2 n \pi t}{T}+b_n \sin \frac{2 n \pi t}{T}\right) \sin \frac{2 m \pi t}{T} \mathrm{~d} t \end{aligned}

Again assuming that it is legitimate to interchange the order of integration and summation, we obtain

\begin{aligned} \int_0^T f(t) \sin \frac{2 m \pi t}{T} \mathrm{~d} t= & \int_0^T \frac{a_0}{2} \sin \frac{2 m \pi t}{T} \mathrm{~d} t \\ & +\sum_{n=1}^{\infty} \int_0^T\left(a_n \cos \frac{2 n \pi t}{T}+b_n \sin \frac{2 n \pi t}{T}\right) \sin \frac{2 m \pi t}{T} \mathrm{~d} t \end{aligned}

The first integral on the r.h.s. is easily shown to be zero. Furthermore, we can use the properties given in Table 23.1 to show that the rest of the integrals on the r.h.s. vanish except for the case when n = m, in which case the r.h.s. reduces to \frac{b_m T}{2}. Hence we find

b_m=\frac{2}{T} \int_0^T f(t) \sin \frac{2 m \pi t}{T} \mathrm{~d} t

as required.

Table 23.1
Some useful integral identities.
\begin{aligned}\hline & \int_0^T \sin \frac{2 n \pi t}{T} \mathrm{~d} t=0 \quad \text { for all integers } n \\ & \int_0^T \cos \frac{2 n \pi t}{T} \mathrm{~d} t=0 \quad n=1,2,3, \ldots \\ & \int_0^T \cos \frac{2 n \pi t}{T} \mathrm{~d} t=T \quad n=0 \\ & \int_0^T \cos \frac{2 m \pi t}{T} \cos \frac{2 n \pi t}{T} \mathrm{~d} t= \begin{cases}0 & m \neq n \\ T / 2 & m=n \neq 0\end{cases} \\ & \int_0^T \sin \frac{2 m \pi t}{T} \sin \frac{2 n \pi t}{T} \mathrm{~d} t= \begin{cases}0 & m \neq n \\ T / 2 & m=n \neq 0\end{cases} \\ & \int_0^T \sin \frac{2 m \pi t}{T} \cos \frac{2 n \pi t}{T} \mathrm{~d} t=0 \quad \text { for all integers } m \text { and } n \\\hline & \end{aligned}

Related Answered Questions

Question: 23.22

Verified Answer:

For the capacitor, v_{\mathrm{o}}=\frac{i}{...
Question: 23.15

Verified Answer:

As usual we sketch f (t), as shown in Figure 23.16...
Question: 23.14

Verified Answer:

As usual we sketch f (t) first as this often provi...