Holooly Plus Logo

Question 1.4: Power Capacity of Punch Press Flywheel A high-strength steel......

Power Capacity of Punch Press Flywheel

A high-strength steel flywheel of outer and inner rim diameters d_o and d_i , and length in axial direction of l, rotates at a speed of n (Figure 1.7). It is to be used to punch metal during two-thirds of a revolution of the flywheel. What is the average power available?

Given

d_o=0.5  m , n=1000  rpm , \rho=7860  kg / m ^3 (Table B.1)

Assumptions

1. Friction losses are negligible.

2. Flywheel proportions are d_i=0.75 d_o \text { and } l=0.18 d_o .

3. The inertia contributed by the hub and spokes is omitted: the flywheel is considered as a rotating ring free to expand.

F1.7
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Through the use of Equations (1.9) and (1.10), we obtain

W=T \theta          (1.9)

E_k=\frac{1}{2} I \omega^2            (1.10)

T \theta=\frac{1}{2} I \omega^2           (1.18)

where

\theta=\frac{2}{3}(2 \pi)=4 \pi / 3 rad

 

\omega=1000(2 \pi / 60)=104.7  rad / s

 

\begin{aligned} I & =\frac{\pi}{32}\left(d_o^4-d_i^4\right) l \rho \quad(\text { Case 5, Table A.5 }) \\ & =\frac{\pi}{32}\left[(0.5)^4-(0.375)^4\right](0.09)(7860)=2.967  kg \cdot m ^2 \end{aligned}

Introducing the given data into Equation (1.18) and solving T=3882 N · m. Equation (1.15) is therefore

kW =\frac{F V}{1000}=\frac{T n}{9549}            (1.15)

\begin{aligned} kW =\frac{T n}{9549} & =\frac{3882(1000)}{9549} \\ & =406.5 \end{aligned}

Comment: The braking torque required to stop a similar disk in a two thirds revolution would have an average value of 3.88 kN · m (see Section 16.5).

TABLE A.5
Mass and Mass Moments of Inertia of Solids
\begin{aligned} & m=\frac{\pi d^2 L \rho}{4} \\ & I_y=I_z=\frac{m L^2}{12} \end{aligned}
\begin{aligned} & m=\frac{\pi d^2 t \rho}{4} \\ & I_x=\frac{m d^2}{8} \\ & I_y=I_z=\frac{m d^2}{16} \end{aligned}
\begin{aligned} & m=a b c \rho \\ & I_x=\frac{m}{12}\left(a^2+b^2\right) \\ & I_y=\frac{m}{12}\left(a^2+c^2\right) \\ & I_z=\frac{m}{12}\left(b^2+a^2\right) \end{aligned}
\begin{aligned} & m=\frac{\pi d^2 L \rho}{4} \\ & I_x=\frac{m d^2}{8} \\ & I_y=I_z=\frac{m}{48}\left(3 a^2+4 L^2\right) \end{aligned}
\begin{aligned} & m=\frac{\pi d^2 L \rho}{4}\left(3 d_o^2-d_i^2\right) \\ & I_x=\frac{m}{4}\left(d_o^2+d_i^2\right) \\ & I_y=I_z=\frac{m}{48}\left(3 d_o^2+3 d_i^2+4 L^2\right) \end{aligned}
Notes: \rho , mass density; m , mass; I , mass moment of inertia.

Related Answered Questions