Repeat Ex. 30.10 if 1.5 bits/stage are used. Assume the converter is ideal and the comparators switch precisely at V_{_{C M}}/2 (= 250 mV here) and 3V_{_{C M}}/2 (= 750 mV here). Assume all latches initially contain zeroes.
noting that b_{8}=a_{1.57}\oplus c_{7}=1. We can reorder the bits so the MSB is on the left, the LSB is on the right, yielding 1 0001 1001 and subtract 0 0111 1111 yielding
1 0001 1001 (281)
– 0 0111 1111 (127)
0 1001 1010 (154)
This is the result given in Ex. 30.10 (1001 1001, or decimal 153) plus 1 LSB. The 1 LSB discrepancy can be traced to Eq. (30.66) where we used 0.5 LSBs. Because our resolution is at best 1 LSB, sometimes the result will experience a round-off error. To understand this in the subtraction above, the more correct decimal representation of V_{C M}-0.5 LSBs is 127.5 and the more correct decimal output is 153.5.
v_{in}= a_{1.5N-1} \cdot 2V_{CM} + (\overline{a_{1.5N-1}} b_{1.5N-1} + a_{1.5N-2}) \cdot V_{CM} + (\overline{a_{1.5N-2}}b_{1.5N-2} + a_{1.5 N-3}) \cdot \frac{V_{CM}}{2} + (\overline{a_{1.5N-3}} b_{1.5 N-3} + a_{1.5N-4}) \cdot \frac{V_{CM}}{4} + … + \overline{a_{1.50}}b_{1.50} \cdot \frac{V_{CM}}{2^{N-1}} – (V_{CM} – 0.5 LSB) \quad \quad (30.66)