Holooly Plus Logo

Question 15.3: Saturated steam at 0.276 MPa flows inside a steel pipe havin......

Saturated steam at 0.276 MPa flows inside a steel pipe having an inside diameter of 2.09 cm and an outside diameter of 2.67 cm. The convective coefficients on the inner and outer pipe surfaces are 5680 and 22.7 W/m² · K, respectively. The surrounding air is at 294 K. Find the heat loss per meter of bare pipe and for a pipe having a 3.8 cm thickness of 85% magnesia insulation on its outer surface.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

In the case of the bare pipe there are three thermal resistances to evaluate

R_{1}=R_{\mathrm{convection\ \mathrm{inside}}}=1/h_{i}A_{i}

R_{2}\equiv R_{\mathrm{convection~outside}}\equiv1/h_{o}A_{o}

R_{3}=R_{\mathrm{conduction}}=\ln(r_{o}/r_{i})/2\pi k L

For conditions of this problem, these resistances have the values

R_{1}=1/[(5680\,\mathrm{W/m^{2}}\cdot\mathrm{K})(\pi)(0.0209\,\mathrm{m})(1\,\mathrm{m})]

=\;0.00268\ \mathrm{K/W}\qquad\left(0.00141\frac{\mathrm{h}\ \mathrm{R}}{\mathrm{Btu}}\right)

R_{2}=1/[(22.7\,\mathrm{W/m}^{2}\cdot{K})(\pi)(0.0267\,\mathrm{m})(1\,\mathrm{m})]

=\;0.525\;\mathrm{K/W}\qquad\left(0.277\frac{\mathrm{h\;R}}{\mathrm{Btu}}\right)

and

R_{3}={\frac{\ln(2.67/2.09)}{2\pi(42.9\;\mathrm{W/m}\cdot\mathrm{K})(1\,\mathrm{m})}}

=\;0.00091\;{\mathrm{K/W}}\qquad\ \;\left(0.0048\;{\frac{\mathrm{hR}}{\mathrm{Btu}}}\right)

The inside temperature is that of 0.276 MPa saturated steam, 404 K or 267 F. The heat-transfer rate per meter of pipe may now be calculated as

q={\frac{\Delta T}{\sum R}}={\frac{404-294\,\mathrm{K}}{0.528\,\mathrm{KW}}}

\begin{array}{r l}{=\ 208\,\mathrm{W}}&{{}\quad\left(710{\frac{\mathrm{Btu}}{\mathrm{h}}}\right)}\end{array}

In the case of an insulated pipe, the total thermal resistance would include R_{1} and R_{3} evaluated above, plus additional resistances to account for the insulation. For the insulation,

R_{4}=\frac{\ln(10.27/2.67)}{2\pi(0.0675\mathrm{\small~W/m\cdot K})(1\,m)}

=\;3.176\;\mathrm{K/W}\qquad\left(1.675\;\frac{\mathrm{h\;R}}{\mathrm{Btu}}\right)

and for the outside surface of the insulation,

\begin{array}{l}{{R_{5}=1/[(22.7\,\mathrm{W/m^{2}}\cdot{ K})(\pi)(0.1027\,\mathrm{m})(1\,\mathrm{m})]}}\end{array}

=~0.1365~\mathrm{K/W}~~~~~~~\left(0.0720~{\frac{\mathrm{hR}}{\mathrm{Btu}}}\right)

Thus, the heat loss for the insulated pipe becomes

q\ ={\frac{\Delta T}{\sum R}}={\frac{\Delta T}{R_{1}+R_{3}+R_{4}+R_{5}}}={\frac{404-294\ \mathrm{K}}{3.316\ \mathrm{K/W}}}

=~33.2~\mathrm{W}~~~~~~~\left(113~{\frac{\mathrm{Btu}}{\mathrm{h}}}\right)

This is a reduction of approximately 85%!

Related Answered Questions