Solve the PDE
p² + q² + pq – qx – py – 2z + xy = o.
I mode. From the system (2.38) we have
\frac{d x}{\frac{\partial F}{\partial p}}=\frac{d y}{\frac{\partial F}{\partial q}}=\frac{d z}{p \frac{\partial F}{\partial p}+q \frac{\partial F}{\partial q}}=\frac{-d p}{\frac{\partial F}{\partial x}+p \frac{\partial F}{\partial z}}=\frac{-d q}{\frac{\partial F}{\partial y}+q \frac{\partial F}{\partial z}} (2.38)
Now we easily find one first integral, namely
x+a=p, \quad \text { and thus } \Psi_1=p-x \text {. }
Another first integral is
\Psi_2=q-y
Since these two first integrals are in involution (check that!), it follows that the complete solution is
z=\frac{1}{2}\left((x+a)^2+(y+b)^2+a b\right) .
II mode. As in mode I, we find that p = x + a is a first integral. From the given equation it follows
q=-\frac{a}{2}+\sqrt{2 z+a y-(x+a)^2+\frac{a^2}{4}} .
Thus we obtain Pfaff’s equation
d z=(x+a) d x+\left(-\frac{a}{2}+\sqrt{2 z+a y-(x+a)^2+\frac{a^2}{4}}\right) d y
or
\frac{d z+\frac{a}{2} d y-(x+a) d x}{\sqrt{2 z+a y-(x+a)^2+\frac{a^2}{4}}}=0 .
Hence the complete solution is
y+b+\frac{a}{2}=\sqrt{2 z+a y-(x+a)^2+\frac{a^2}{4}}